summaryrefslogtreecommitdiff
path: root/tools/hmac-sha1.c
diff options
context:
space:
mode:
Diffstat (limited to 'tools/hmac-sha1.c')
-rw-r--r--tools/hmac-sha1.c463
1 files changed, 463 insertions, 0 deletions
diff --git a/tools/hmac-sha1.c b/tools/hmac-sha1.c
new file mode 100644
index 0000000000..1b4b3b5abd
--- /dev/null
+++ b/tools/hmac-sha1.c
@@ -0,0 +1,463 @@
1/*
2 * sha1.c
3 *
4 * Description:
5 * This file implements the Secure Hashing Algorithm 1 as
6 * defined in FIPS PUB 180-1 published April 17, 1995.
7 *
8 * The SHA-1, produces a 160-bit message digest for a given
9 * data stream. It should take about 2**n steps to find a
10 * message with the same digest as a given message and
11 * 2**(n/2) to find any two messages with the same digest,
12 * when n is the digest size in bits. Therefore, this
13 * algorithm can serve as a means of providing a
14 * "fingerprint" for a message.
15 *
16 * Portability Issues:
17 * SHA-1 is defined in terms of 32-bit "words". This code
18 * uses <stdint.h> (included via "sha1.h" to define 32 and 8
19 * bit unsigned integer types. If your C compiler does not
20 * support 32 bit unsigned integers, this code is not
21 * appropriate.
22 *
23 * Caveats:
24 * SHA-1 is designed to work with messages less than 2^64 bits
25 * long. Although SHA-1 allows a message digest to be generated
26 * for messages of any number of bits less than 2^64, this
27 * implementation only works with messages with a length that is
28 * a multiple of the size of an 8-bit character.
29 *
30 */
31
32#include "hmac-sha1.h"
33
34/*
35 * Define the SHA1 circular left shift macro
36 */
37#define SHA1CircularShift(bits,word) \
38 (((word) << (bits)) | ((word) >> (32-(bits))))
39
40/* Local Function Prototyptes */
41void SHA1PadMessage(SHA1Context *);
42void SHA1ProcessMessageBlock(SHA1Context *);
43
44/*
45 * SHA1Reset
46 *
47 * Description:
48 * This function will initialize the SHA1Context in preparation
49 * for computing a new SHA1 message digest.
50 *
51 * Parameters:
52 * context: [in/out]
53 * The context to reset.
54 *
55 * Returns:
56 * sha Error Code.
57 *
58 */
59int SHA1Reset(SHA1Context *context)
60{
61 if (!context)
62 {
63 return shaNull;
64 }
65
66 context->Length_Low = 0;
67 context->Length_High = 0;
68 context->Message_Block_Index = 0;
69
70 context->Intermediate_Hash[0] = 0x67452301;
71 context->Intermediate_Hash[1] = 0xEFCDAB89;
72 context->Intermediate_Hash[2] = 0x98BADCFE;
73 context->Intermediate_Hash[3] = 0x10325476;
74 context->Intermediate_Hash[4] = 0xC3D2E1F0;
75
76 context->Computed = 0;
77 context->Corrupted = 0;
78
79 return shaSuccess;
80}
81
82/*
83 * SHA1Result
84 *
85 * Description:
86 * This function will return the 160-bit message digest into the
87 * Message_Digest array provided by the caller.
88 * NOTE: The first octet of hash is stored in the 0th element,
89 * the last octet of hash in the 19th element.
90 *
91 * Parameters:
92 * context: [in/out]
93 * The context to use to calculate the SHA-1 hash.
94 * Message_Digest: [out]
95 * Where the digest is returned.
96 *
97 * Returns:
98 * sha Error Code.
99 *
100 */
101int SHA1Result( SHA1Context *context,
102 uint8_t Message_Digest[SHA1HashSize])
103{
104 int i;
105
106 if (!context || !Message_Digest)
107 {
108 return shaNull;
109 }
110
111 if (context->Corrupted)
112 {
113 return context->Corrupted;
114 }
115
116 if (!context->Computed)
117 {
118 SHA1PadMessage(context);
119 for(i=0; i<64; ++i)
120 {
121 /* message may be sensitive, clear it out */
122 context->Message_Block[i] = 0;
123 }
124 context->Length_Low = 0; /* and clear length */
125 context->Length_High = 0;
126 context->Computed = 1;
127 }
128
129 for(i = 0; i < SHA1HashSize; ++i)
130 {
131 Message_Digest[i] = context->Intermediate_Hash[i>>2]
132 >> 8 * ( 3 - ( i & 0x03 ) );
133 }
134
135 return shaSuccess;
136}
137
138/*
139 * SHA1Input
140 *
141 * Description:
142 * This function accepts an array of octets as the next portion
143 * of the message.
144 *
145 * Parameters:
146 * context: [in/out]
147 * The SHA context to update
148 * message_array: [in]
149 * An array of characters representing the next portion of
150 * the message.
151 * length: [in]
152 * The length of the message in message_array
153 *
154 * Returns:
155 * sha Error Code.
156 *
157 */
158int SHA1Input( SHA1Context *context,
159 const uint8_t *message_array,
160 unsigned length)
161{
162 if (!length)
163 {
164 return shaSuccess;
165 }
166
167 if (!context || !message_array)
168 {
169 return shaNull;
170 }
171
172 if (context->Computed)
173 {
174 context->Corrupted = shaStateError;
175 return shaStateError;
176 }
177
178 if (context->Corrupted)
179 {
180 return context->Corrupted;
181 }
182 while(length-- && !context->Corrupted)
183 {
184 context->Message_Block[context->Message_Block_Index++] =
185 (*message_array & 0xFF);
186
187 context->Length_Low += 8;
188 if (context->Length_Low == 0)
189 {
190 context->Length_High++;
191 if (context->Length_High == 0)
192 {
193 /* Message is too long */
194 context->Corrupted = 1;
195 }
196 }
197
198 if (context->Message_Block_Index == 64)
199 {
200 SHA1ProcessMessageBlock(context);
201 }
202
203 message_array++;
204 }
205
206 return shaSuccess;
207}
208
209/*
210 * SHA1ProcessMessageBlock
211 *
212 * Description:
213 * This function will process the next 512 bits of the message
214 * stored in the Message_Block array.
215 *
216 * Parameters:
217 * None.
218 *
219 * Returns:
220 * Nothing.
221 *
222 * Comments:
223 * Many of the variable names in this code, especially the
224 * single character names, were used because those were the
225 * names used in the publication.
226 *
227 *
228 */
229void SHA1ProcessMessageBlock(SHA1Context *context)
230{
231 const uint32_t K[] = { /* Constants defined in SHA-1 */
232 0x5A827999,
233 0x6ED9EBA1,
234 0x8F1BBCDC,
235 0xCA62C1D6
236 };
237 int t; /* Loop counter */
238 uint32_t temp; /* Temporary word value */
239 uint32_t W[80]; /* Word sequence */
240 uint32_t A, B, C, D, E; /* Word buffers */
241
242 /*
243 * Initialize the first 16 words in the array W
244 */
245 for(t = 0; t < 16; t++)
246 {
247 W[t] = context->Message_Block[t * 4] << 24;
248 W[t] |= context->Message_Block[t * 4 + 1] << 16;
249 W[t] |= context->Message_Block[t * 4 + 2] << 8;
250 W[t] |= context->Message_Block[t * 4 + 3];
251 }
252
253 for(t = 16; t < 80; t++)
254 {
255 W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
256 }
257
258 A = context->Intermediate_Hash[0];
259 B = context->Intermediate_Hash[1];
260 C = context->Intermediate_Hash[2];
261 D = context->Intermediate_Hash[3];
262 E = context->Intermediate_Hash[4];
263
264 for(t = 0; t < 20; t++)
265 {
266 temp = SHA1CircularShift(5,A) +
267 ((B & C) | ((~B) & D)) + E + W[t] + K[0];
268 E = D;
269 D = C;
270 C = SHA1CircularShift(30,B);
271 B = A;
272 A = temp;
273 }
274
275 for(t = 20; t < 40; t++)
276 {
277 temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
278 E = D;
279 D = C;
280 C = SHA1CircularShift(30,B);
281 B = A;
282 A = temp;
283 }
284
285 for(t = 40; t < 60; t++)
286 {
287 temp = SHA1CircularShift(5,A) +
288 ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
289 E = D;
290 D = C;
291 C = SHA1CircularShift(30,B);
292 B = A;
293 A = temp;
294 }
295
296 for(t = 60; t < 80; t++)
297 {
298 temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
299 E = D;
300 D = C;
301 C = SHA1CircularShift(30,B);
302 B = A;
303 A = temp;
304 }
305
306 context->Intermediate_Hash[0] += A;
307 context->Intermediate_Hash[1] += B;
308 context->Intermediate_Hash[2] += C;
309 context->Intermediate_Hash[3] += D;
310 context->Intermediate_Hash[4] += E;
311
312 context->Message_Block_Index = 0;
313}
314
315
316/*
317 * SHA1PadMessage
318 *
319 * Description:
320 * According to the standard, the message must be padded to an even
321 * 512 bits. The first padding bit must be a '1'. The last 64
322 * bits represent the length of the original message. All bits in
323 * between should be 0. This function will pad the message
324 * according to those rules by filling the Message_Block array
325 * accordingly. It will also call the ProcessMessageBlock function
326 * provided appropriately. When it returns, it can be assumed that
327 * the message digest has been computed.
328 *
329 * Parameters:
330 * context: [in/out]
331 * The context to pad
332 * ProcessMessageBlock: [in]
333 * The appropriate SHA*ProcessMessageBlock function
334 * Returns:
335 * Nothing.
336 *
337 */
338
339void SHA1PadMessage(SHA1Context *context)
340{
341 /*
342 * Check to see if the current message block is too small to hold
343 * the initial padding bits and length. If so, we will pad the
344 * block, process it, and then continue padding into a second
345 * block.
346 */
347 if (context->Message_Block_Index > 55)
348 {
349 context->Message_Block[context->Message_Block_Index++] = 0x80;
350 while(context->Message_Block_Index < 64)
351 {
352 context->Message_Block[context->Message_Block_Index++] = 0;
353 }
354
355 SHA1ProcessMessageBlock(context);
356
357 while(context->Message_Block_Index < 56)
358 {
359 context->Message_Block[context->Message_Block_Index++] = 0;
360 }
361 }
362 else
363 {
364 context->Message_Block[context->Message_Block_Index++] = 0x80;
365 while(context->Message_Block_Index < 56)
366 {
367 context->Message_Block[context->Message_Block_Index++] = 0;
368 }
369 }
370
371 /*
372 * Store the message length as the last 8 octets
373 */
374 context->Message_Block[56] = context->Length_High >> 24;
375 context->Message_Block[57] = context->Length_High >> 16;
376 context->Message_Block[58] = context->Length_High >> 8;
377 context->Message_Block[59] = context->Length_High;
378 context->Message_Block[60] = context->Length_Low >> 24;
379 context->Message_Block[61] = context->Length_Low >> 16;
380 context->Message_Block[62] = context->Length_Low >> 8;
381 context->Message_Block[63] = context->Length_Low;
382
383 SHA1ProcessMessageBlock(context);
384}
385#define SHA_DIGESTSIZE 20
386
387#define SHA_BLOCKSIZE 64
388
389static void truncate
390(
391 char* d1, /* data to be truncated */
392 char* d2, /* truncated data */
393 int len /* length in bytes to keep */
394)
395{
396 int i ;
397 for (i = 0 ; i < len ; i++) d2[i] = d1[i];
398}
399
400
401/* Function to compute the digest */
402void
403hmac_sha
404(
405 char* k, /* secret key */
406 int lk, /* length of the key in bytes */
407 char* d, /* data */
408 int ld, /* length of data in bytes */
409 char* out, /* output buffer, at least "t" bytes */
410 int t
411)
412{
413 SHA1Context ictx, octx ;
414 char isha[SHA_DIGESTSIZE], osha[SHA_DIGESTSIZE] ;
415 char key[SHA_DIGESTSIZE] ;
416 char buf[SHA_BLOCKSIZE] ;
417 int i ;
418
419 if (lk > SHA_BLOCKSIZE) {
420
421 SHA1Context tctx ;
422
423 SHA1Reset(&tctx) ;
424 SHA1Input(&tctx, k, lk) ;
425 SHA1Result(&tctx, key) ;
426
427 k = key ;
428 lk = SHA_DIGESTSIZE ;
429 }
430
431 /**** Inner Digest ****/
432
433 SHA1Reset(&ictx) ;
434
435 /* Pad the key for inner digest */
436 for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x36 ;
437 for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x36 ;
438
439 SHA1Input(&ictx, buf, SHA_BLOCKSIZE) ;
440 SHA1Input(&ictx, d, ld) ;
441
442 SHA1Result(&ictx, isha) ;
443
444 /**** Outter Digest ****/
445
446 SHA1Reset(&octx) ;
447
448 /* Pad the key for outter digest */
449
450
451 for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x5C ;
452 for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x5C ;
453
454 SHA1Input(&octx, buf, SHA_BLOCKSIZE) ;
455 SHA1Input(&octx, isha, SHA_DIGESTSIZE) ;
456
457 SHA1Result(&octx, osha) ;
458
459 /* truncate and print the results */
460 t = t > SHA_DIGESTSIZE ? SHA_DIGESTSIZE : t ;
461 truncate(osha, out, t) ;
462
463}