summaryrefslogtreecommitdiff
path: root/lib/rbcodec/codecs/libspeex/kiss_fftr.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/rbcodec/codecs/libspeex/kiss_fftr.c')
-rw-r--r--lib/rbcodec/codecs/libspeex/kiss_fftr.c297
1 files changed, 297 insertions, 0 deletions
diff --git a/lib/rbcodec/codecs/libspeex/kiss_fftr.c b/lib/rbcodec/codecs/libspeex/kiss_fftr.c
new file mode 100644
index 0000000000..1c694b195d
--- /dev/null
+++ b/lib/rbcodec/codecs/libspeex/kiss_fftr.c
@@ -0,0 +1,297 @@
1/*
2Copyright (c) 2003-2004, Mark Borgerding
3
4All rights reserved.
5
6Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
7
8 * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
9 * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
10 * Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
11
12THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
13*/
14
15#ifdef HAVE_CONFIG_H
16#include "config-speex.h"
17#endif
18
19#include "os_support.h"
20#include "kiss_fftr.h"
21#include "_kiss_fft_guts.h"
22
23struct kiss_fftr_state{
24 kiss_fft_cfg substate;
25 kiss_fft_cpx * tmpbuf;
26 kiss_fft_cpx * super_twiddles;
27#ifdef USE_SIMD
28 long pad;
29#endif
30};
31
32kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem)
33{
34 int i;
35 kiss_fftr_cfg st = NULL;
36 size_t subsize, memneeded;
37
38 if (nfft & 1) {
39 speex_warning("Real FFT optimization must be even.\n");
40 return NULL;
41 }
42 nfft >>= 1;
43
44 kiss_fft_alloc (nfft, inverse_fft, NULL, &subsize);
45 memneeded = sizeof(struct kiss_fftr_state) + subsize + sizeof(kiss_fft_cpx) * ( nfft * 2);
46
47 if (lenmem == NULL) {
48 st = (kiss_fftr_cfg) KISS_FFT_MALLOC (memneeded);
49 } else {
50 if (*lenmem >= memneeded)
51 st = (kiss_fftr_cfg) mem;
52 *lenmem = memneeded;
53 }
54 if (!st)
55 return NULL;
56
57 st->substate = (kiss_fft_cfg) (st + 1); /*just beyond kiss_fftr_state struct */
58 st->tmpbuf = (kiss_fft_cpx *) (((char *) st->substate) + subsize);
59 st->super_twiddles = st->tmpbuf + nfft;
60 kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize);
61
62#ifdef FIXED_POINT
63 for (i=0;i<nfft;++i) {
64 spx_word32_t phase = i+(nfft>>1);
65 if (!inverse_fft)
66 phase = -phase;
67 kf_cexp2(st->super_twiddles+i, DIV32(SHL32(phase,16),nfft));
68 }
69#else
70 for (i=0;i<nfft;++i) {
71 const double pi=3.14159265358979323846264338327;
72 double phase = pi*(((double)i) /nfft + .5);
73 if (!inverse_fft)
74 phase = -phase;
75 kf_cexp(st->super_twiddles+i, phase );
76 }
77#endif
78 return st;
79}
80
81void kiss_fftr(kiss_fftr_cfg st,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata)
82{
83 /* input buffer timedata is stored row-wise */
84 int k,ncfft;
85 kiss_fft_cpx fpnk,fpk,f1k,f2k,tw,tdc;
86
87 if ( st->substate->inverse) {
88 speex_fatal("kiss fft usage error: improper alloc\n");
89 }
90
91 ncfft = st->substate->nfft;
92
93 /*perform the parallel fft of two real signals packed in real,imag*/
94 kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf );
95 /* The real part of the DC element of the frequency spectrum in st->tmpbuf
96 * contains the sum of the even-numbered elements of the input time sequence
97 * The imag part is the sum of the odd-numbered elements
98 *
99 * The sum of tdc.r and tdc.i is the sum of the input time sequence.
100 * yielding DC of input time sequence
101 * The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1...
102 * yielding Nyquist bin of input time sequence
103 */
104
105 tdc.r = st->tmpbuf[0].r;
106 tdc.i = st->tmpbuf[0].i;
107 C_FIXDIV(tdc,2);
108 CHECK_OVERFLOW_OP(tdc.r ,+, tdc.i);
109 CHECK_OVERFLOW_OP(tdc.r ,-, tdc.i);
110 freqdata[0].r = tdc.r + tdc.i;
111 freqdata[ncfft].r = tdc.r - tdc.i;
112#ifdef USE_SIMD
113 freqdata[ncfft].i = freqdata[0].i = _mm_set1_ps(0);
114#else
115 freqdata[ncfft].i = freqdata[0].i = 0;
116#endif
117
118 for ( k=1;k <= ncfft/2 ; ++k ) {
119 fpk = st->tmpbuf[k];
120 fpnk.r = st->tmpbuf[ncfft-k].r;
121 fpnk.i = - st->tmpbuf[ncfft-k].i;
122 C_FIXDIV(fpk,2);
123 C_FIXDIV(fpnk,2);
124
125 C_ADD( f1k, fpk , fpnk );
126 C_SUB( f2k, fpk , fpnk );
127 C_MUL( tw , f2k , st->super_twiddles[k]);
128
129 freqdata[k].r = HALF_OF(f1k.r + tw.r);
130 freqdata[k].i = HALF_OF(f1k.i + tw.i);
131 freqdata[ncfft-k].r = HALF_OF(f1k.r - tw.r);
132 freqdata[ncfft-k].i = HALF_OF(tw.i - f1k.i);
133 }
134}
135
136void kiss_fftri(kiss_fftr_cfg st,const kiss_fft_cpx *freqdata, kiss_fft_scalar *timedata)
137{
138 /* input buffer timedata is stored row-wise */
139 int k, ncfft;
140
141 if (st->substate->inverse == 0) {
142 speex_fatal("kiss fft usage error: improper alloc\n");
143 }
144
145 ncfft = st->substate->nfft;
146
147 st->tmpbuf[0].r = freqdata[0].r + freqdata[ncfft].r;
148 st->tmpbuf[0].i = freqdata[0].r - freqdata[ncfft].r;
149 /*C_FIXDIV(st->tmpbuf[0],2);*/
150
151 for (k = 1; k <= ncfft / 2; ++k) {
152 kiss_fft_cpx fk, fnkc, fek, fok, tmp;
153 fk = freqdata[k];
154 fnkc.r = freqdata[ncfft - k].r;
155 fnkc.i = -freqdata[ncfft - k].i;
156 /*C_FIXDIV( fk , 2 );
157 C_FIXDIV( fnkc , 2 );*/
158
159 C_ADD (fek, fk, fnkc);
160 C_SUB (tmp, fk, fnkc);
161 C_MUL (fok, tmp, st->super_twiddles[k]);
162 C_ADD (st->tmpbuf[k], fek, fok);
163 C_SUB (st->tmpbuf[ncfft - k], fek, fok);
164#ifdef USE_SIMD
165 st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0);
166#else
167 st->tmpbuf[ncfft - k].i *= -1;
168#endif
169 }
170 kiss_fft (st->substate, st->tmpbuf, (kiss_fft_cpx *) timedata);
171}
172
173void kiss_fftr2(kiss_fftr_cfg st,const kiss_fft_scalar *timedata,kiss_fft_scalar *freqdata)
174{
175 /* input buffer timedata is stored row-wise */
176 int k,ncfft;
177 kiss_fft_cpx f2k,tdc;
178 spx_word32_t f1kr, f1ki, twr, twi;
179
180 if ( st->substate->inverse) {
181 speex_fatal("kiss fft usage error: improper alloc\n");
182 }
183
184 ncfft = st->substate->nfft;
185
186 /*perform the parallel fft of two real signals packed in real,imag*/
187 kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf );
188 /* The real part of the DC element of the frequency spectrum in st->tmpbuf
189 * contains the sum of the even-numbered elements of the input time sequence
190 * The imag part is the sum of the odd-numbered elements
191 *
192 * The sum of tdc.r and tdc.i is the sum of the input time sequence.
193 * yielding DC of input time sequence
194 * The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1...
195 * yielding Nyquist bin of input time sequence
196 */
197
198 tdc.r = st->tmpbuf[0].r;
199 tdc.i = st->tmpbuf[0].i;
200 C_FIXDIV(tdc,2);
201 CHECK_OVERFLOW_OP(tdc.r ,+, tdc.i);
202 CHECK_OVERFLOW_OP(tdc.r ,-, tdc.i);
203 freqdata[0] = tdc.r + tdc.i;
204 freqdata[2*ncfft-1] = tdc.r - tdc.i;
205
206 for ( k=1;k <= ncfft/2 ; ++k )
207 {
208 /*fpk = st->tmpbuf[k];
209 fpnk.r = st->tmpbuf[ncfft-k].r;
210 fpnk.i = - st->tmpbuf[ncfft-k].i;
211 C_FIXDIV(fpk,2);
212 C_FIXDIV(fpnk,2);
213
214 C_ADD( f1k, fpk , fpnk );
215 C_SUB( f2k, fpk , fpnk );
216
217 C_MUL( tw , f2k , st->super_twiddles[k]);
218
219 freqdata[2*k-1] = HALF_OF(f1k.r + tw.r);
220 freqdata[2*k] = HALF_OF(f1k.i + tw.i);
221 freqdata[2*(ncfft-k)-1] = HALF_OF(f1k.r - tw.r);
222 freqdata[2*(ncfft-k)] = HALF_OF(tw.i - f1k.i);
223 */
224
225 /*f1k.r = PSHR32(ADD32(EXTEND32(st->tmpbuf[k].r), EXTEND32(st->tmpbuf[ncfft-k].r)),1);
226 f1k.i = PSHR32(SUB32(EXTEND32(st->tmpbuf[k].i), EXTEND32(st->tmpbuf[ncfft-k].i)),1);
227 f2k.r = PSHR32(SUB32(EXTEND32(st->tmpbuf[k].r), EXTEND32(st->tmpbuf[ncfft-k].r)),1);
228 f2k.i = SHR32(ADD32(EXTEND32(st->tmpbuf[k].i), EXTEND32(st->tmpbuf[ncfft-k].i)),1);
229
230 C_MUL( tw , f2k , st->super_twiddles[k]);
231
232 freqdata[2*k-1] = HALF_OF(f1k.r + tw.r);
233 freqdata[2*k] = HALF_OF(f1k.i + tw.i);
234 freqdata[2*(ncfft-k)-1] = HALF_OF(f1k.r - tw.r);
235 freqdata[2*(ncfft-k)] = HALF_OF(tw.i - f1k.i);
236 */
237 f2k.r = SHR32(SUB32(EXTEND32(st->tmpbuf[k].r), EXTEND32(st->tmpbuf[ncfft-k].r)),1);
238 f2k.i = PSHR32(ADD32(EXTEND32(st->tmpbuf[k].i), EXTEND32(st->tmpbuf[ncfft-k].i)),1);
239
240 f1kr = SHL32(ADD32(EXTEND32(st->tmpbuf[k].r), EXTEND32(st->tmpbuf[ncfft-k].r)),13);
241 f1ki = SHL32(SUB32(EXTEND32(st->tmpbuf[k].i), EXTEND32(st->tmpbuf[ncfft-k].i)),13);
242
243 twr = SHR32(SUB32(MULT16_16(f2k.r,st->super_twiddles[k].r),MULT16_16(f2k.i,st->super_twiddles[k].i)), 1);
244 twi = SHR32(ADD32(MULT16_16(f2k.i,st->super_twiddles[k].r),MULT16_16(f2k.r,st->super_twiddles[k].i)), 1);
245
246#ifdef FIXED_POINT
247 freqdata[2*k-1] = PSHR32(f1kr + twr, 15);
248 freqdata[2*k] = PSHR32(f1ki + twi, 15);
249 freqdata[2*(ncfft-k)-1] = PSHR32(f1kr - twr, 15);
250 freqdata[2*(ncfft-k)] = PSHR32(twi - f1ki, 15);
251#else
252 freqdata[2*k-1] = .5f*(f1kr + twr);
253 freqdata[2*k] = .5f*(f1ki + twi);
254 freqdata[2*(ncfft-k)-1] = .5f*(f1kr - twr);
255 freqdata[2*(ncfft-k)] = .5f*(twi - f1ki);
256
257#endif
258 }
259}
260
261void kiss_fftri2(kiss_fftr_cfg st,const kiss_fft_scalar *freqdata,kiss_fft_scalar *timedata)
262{
263 /* input buffer timedata is stored row-wise */
264 int k, ncfft;
265
266 if (st->substate->inverse == 0) {
267 speex_fatal ("kiss fft usage error: improper alloc\n");
268 }
269
270 ncfft = st->substate->nfft;
271
272 st->tmpbuf[0].r = freqdata[0] + freqdata[2*ncfft-1];
273 st->tmpbuf[0].i = freqdata[0] - freqdata[2*ncfft-1];
274 /*C_FIXDIV(st->tmpbuf[0],2);*/
275
276 for (k = 1; k <= ncfft / 2; ++k) {
277 kiss_fft_cpx fk, fnkc, fek, fok, tmp;
278 fk.r = freqdata[2*k-1];
279 fk.i = freqdata[2*k];
280 fnkc.r = freqdata[2*(ncfft - k)-1];
281 fnkc.i = -freqdata[2*(ncfft - k)];
282 /*C_FIXDIV( fk , 2 );
283 C_FIXDIV( fnkc , 2 );*/
284
285 C_ADD (fek, fk, fnkc);
286 C_SUB (tmp, fk, fnkc);
287 C_MUL (fok, tmp, st->super_twiddles[k]);
288 C_ADD (st->tmpbuf[k], fek, fok);
289 C_SUB (st->tmpbuf[ncfft - k], fek, fok);
290#ifdef USE_SIMD
291 st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0);
292#else
293 st->tmpbuf[ncfft - k].i *= -1;
294#endif
295 }
296 kiss_fft (st->substate, st->tmpbuf, (kiss_fft_cpx *) timedata);
297}