summaryrefslogtreecommitdiff
path: root/lib/rbcodec/codecs/libopus/silk/NLSF2A.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/rbcodec/codecs/libopus/silk/NLSF2A.c')
-rw-r--r--lib/rbcodec/codecs/libopus/silk/NLSF2A.c59
1 files changed, 11 insertions, 48 deletions
diff --git a/lib/rbcodec/codecs/libopus/silk/NLSF2A.c b/lib/rbcodec/codecs/libopus/silk/NLSF2A.c
index b1c559ea68..d5b7730638 100644
--- a/lib/rbcodec/codecs/libopus/silk/NLSF2A.c
+++ b/lib/rbcodec/codecs/libopus/silk/NLSF2A.c
@@ -66,7 +66,8 @@ static OPUS_INLINE void silk_NLSF2A_find_poly(
66void silk_NLSF2A( 66void silk_NLSF2A(
67 opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */ 67 opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */
68 const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */ 68 const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */
69 const opus_int d /* I filter order (should be even) */ 69 const opus_int d, /* I filter order (should be even) */
70 int arch /* I Run-time architecture */
70) 71)
71{ 72{
72 /* This ordering was found to maximize quality. It improves numerical accuracy of 73 /* This ordering was found to maximize quality. It improves numerical accuracy of
@@ -83,15 +84,14 @@ void silk_NLSF2A(
83 opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ], Q[ SILK_MAX_ORDER_LPC / 2 + 1 ]; 84 opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ], Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
84 opus_int32 Ptmp, Qtmp, f_int, f_frac, cos_val, delta; 85 opus_int32 Ptmp, Qtmp, f_int, f_frac, cos_val, delta;
85 opus_int32 a32_QA1[ SILK_MAX_ORDER_LPC ]; 86 opus_int32 a32_QA1[ SILK_MAX_ORDER_LPC ];
86 opus_int32 maxabs, absval, idx=0, sc_Q16;
87 87
88 silk_assert( LSF_COS_TAB_SZ_FIX == 128 ); 88 silk_assert( LSF_COS_TAB_SZ_FIX == 128 );
89 silk_assert( d==10||d==16 ); 89 celt_assert( d==10 || d==16 );
90 90
91 /* convert LSFs to 2*cos(LSF), using piecewise linear curve from table */ 91 /* convert LSFs to 2*cos(LSF), using piecewise linear curve from table */
92 ordering = d == 16 ? ordering16 : ordering10; 92 ordering = d == 16 ? ordering16 : ordering10;
93 for( k = 0; k < d; k++ ) { 93 for( k = 0; k < d; k++ ) {
94 silk_assert(NLSF[k] >= 0 ); 94 silk_assert( NLSF[k] >= 0 );
95 95
96 /* f_int on a scale 0-127 (rounded down) */ 96 /* f_int on a scale 0-127 (rounded down) */
97 f_int = silk_RSHIFT( NLSF[k], 15 - 7 ); 97 f_int = silk_RSHIFT( NLSF[k], 15 - 7 );
@@ -126,52 +126,15 @@ void silk_NLSF2A(
126 a32_QA1[ d-k-1 ] = Qtmp - Ptmp; /* QA+1 */ 126 a32_QA1[ d-k-1 ] = Qtmp - Ptmp; /* QA+1 */
127 } 127 }
128 128
129 /* Limit the maximum absolute value of the prediction coefficients, so that they'll fit in int16 */ 129 /* Convert int32 coefficients to Q12 int16 coefs */
130 for( i = 0; i < 10; i++ ) { 130 silk_LPC_fit( a_Q12, a32_QA1, 12, QA + 1, d );
131 /* Find maximum absolute value and its index */
132 maxabs = 0;
133 for( k = 0; k < d; k++ ) {
134 absval = silk_abs( a32_QA1[k] );
135 if( absval > maxabs ) {
136 maxabs = absval;
137 idx = k;
138 }
139 }
140 maxabs = silk_RSHIFT_ROUND( maxabs, QA + 1 - 12 ); /* QA+1 -> Q12 */
141
142 if( maxabs > silk_int16_MAX ) {
143 /* Reduce magnitude of prediction coefficients */
144 maxabs = silk_min( maxabs, 163838 ); /* ( silk_int32_MAX >> 14 ) + silk_int16_MAX = 163838 */
145 sc_Q16 = SILK_FIX_CONST( 0.999, 16 ) - silk_DIV32( silk_LSHIFT( maxabs - silk_int16_MAX, 14 ),
146 silk_RSHIFT32( silk_MUL( maxabs, idx + 1), 2 ) );
147 silk_bwexpander_32( a32_QA1, d, sc_Q16 );
148 } else {
149 break;
150 }
151 }
152 131
153 if( i == 10 ) { 132 for( i = 0; silk_LPC_inverse_pred_gain( a_Q12, d, arch ) == 0 && i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) {
154 /* Reached the last iteration, clip the coefficients */ 133 /* Prediction coefficients are (too close to) unstable; apply bandwidth expansion */
134 /* on the unscaled coefficients, convert to Q12 and measure again */
135 silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) );
155 for( k = 0; k < d; k++ ) { 136 for( k = 0; k < d; k++ ) {
156 a_Q12[ k ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ) ); /* QA+1 -> Q12 */ 137 a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */
157 a32_QA1[ k ] = silk_LSHIFT( (opus_int32)a_Q12[ k ], QA + 1 - 12 );
158 }
159 } else {
160 for( k = 0; k < d; k++ ) {
161 a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */
162 }
163 }
164
165 for( i = 0; i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) {
166 if( silk_LPC_inverse_pred_gain( a_Q12, d ) < SILK_FIX_CONST( 1.0 / MAX_PREDICTION_POWER_GAIN, 30 ) ) {
167 /* Prediction coefficients are (too close to) unstable; apply bandwidth expansion */
168 /* on the unscaled coefficients, convert to Q12 and measure again */
169 silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) );
170 for( k = 0; k < d; k++ ) {
171 a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */
172 }
173 } else {
174 break;
175 } 138 }
176 } 139 }
177} 140}