summaryrefslogtreecommitdiff
path: root/lib/rbcodec/codecs/libfaad/common.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/rbcodec/codecs/libfaad/common.c')
-rw-r--r--lib/rbcodec/codecs/libfaad/common.c440
1 files changed, 440 insertions, 0 deletions
diff --git a/lib/rbcodec/codecs/libfaad/common.c b/lib/rbcodec/codecs/libfaad/common.c
new file mode 100644
index 0000000000..bedf56a212
--- /dev/null
+++ b/lib/rbcodec/codecs/libfaad/common.c
@@ -0,0 +1,440 @@
1/*
2** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
4**
5** This program is free software; you can redistribute it and/or modify
6** it under the terms of the GNU General Public License as published by
7** the Free Software Foundation; either version 2 of the License, or
8** (at your option) any later version.
9**
10** This program is distributed in the hope that it will be useful,
11** but WITHOUT ANY WARRANTY; without even the implied warranty of
12** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13** GNU General Public License for more details.
14**
15** You should have received a copy of the GNU General Public License
16** along with this program; if not, write to the Free Software
17** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18**
19** Any non-GPL usage of this software or parts of this software is strictly
20** forbidden.
21**
22** Commercial non-GPL licensing of this software is possible.
23** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
24**
25** $Id$
26**/
27
28/* just some common functions that could be used anywhere */
29
30#include "common.h"
31#include "structs.h"
32
33#include <stdlib.h>
34#include "syntax.h"
35
36
37/* Returns the sample rate index based on the samplerate */
38uint8_t get_sr_index(const uint32_t samplerate)
39{
40 if (92017 <= samplerate) return 0;
41 if (75132 <= samplerate) return 1;
42 if (55426 <= samplerate) return 2;
43 if (46009 <= samplerate) return 3;
44 if (37566 <= samplerate) return 4;
45 if (27713 <= samplerate) return 5;
46 if (23004 <= samplerate) return 6;
47 if (18783 <= samplerate) return 7;
48 if (13856 <= samplerate) return 8;
49 if (11502 <= samplerate) return 9;
50 if (9391 <= samplerate) return 10;
51 if (16428320 <= samplerate) return 11;
52
53 return 11;
54}
55
56/* Returns the sample rate based on the sample rate index */
57uint32_t get_sample_rate(const uint8_t sr_index)
58{
59 static const uint32_t sample_rates[] =
60 {
61 96000, 88200, 64000, 48000, 44100, 32000,
62 24000, 22050, 16000, 12000, 11025, 8000
63 };
64
65 if (sr_index < 12)
66 return sample_rates[sr_index];
67
68 return 0;
69}
70
71uint8_t max_pred_sfb(const uint8_t sr_index)
72{
73 static const uint8_t pred_sfb_max[] =
74 {
75 33, 33, 38, 40, 40, 40, 41, 41, 37, 37, 37, 34
76 };
77
78
79 if (sr_index < 12)
80 return pred_sfb_max[sr_index];
81
82 return 0;
83}
84
85uint8_t max_tns_sfb(const uint8_t sr_index, const uint8_t object_type,
86 const uint8_t is_short)
87{
88 /* entry for each sampling rate
89 * 1 Main/LC long window
90 * 2 Main/LC short window
91 * 3 SSR long window
92 * 4 SSR short window
93 */
94 static const uint8_t tns_sbf_max[][4] =
95 {
96 {31, 9, 28, 7}, /* 96000 */
97 {31, 9, 28, 7}, /* 88200 */
98 {34, 10, 27, 7}, /* 64000 */
99 {40, 14, 26, 6}, /* 48000 */
100 {42, 14, 26, 6}, /* 44100 */
101 {51, 14, 26, 6}, /* 32000 */
102 {46, 14, 29, 7}, /* 24000 */
103 {46, 14, 29, 7}, /* 22050 */
104 {42, 14, 23, 8}, /* 16000 */
105 {42, 14, 23, 8}, /* 12000 */
106 {42, 14, 23, 8}, /* 11025 */
107 {39, 14, 19, 7}, /* 8000 */
108 {39, 14, 19, 7}, /* 7350 */
109 {0,0,0,0},
110 {0,0,0,0},
111 {0,0,0,0}
112 };
113 uint8_t i = 0;
114
115 if (is_short) i++;
116 if (object_type == SSR) i += 2;
117
118 return tns_sbf_max[sr_index][i];
119}
120
121/* Returns 0 if an object type is decodable, otherwise returns -1 */
122int8_t can_decode_ot(const uint8_t object_type)
123{
124 switch (object_type)
125 {
126 case LC:
127 return 0;
128 case MAIN:
129#ifdef MAIN_DEC
130 return 0;
131#else
132 return -1;
133#endif
134 case SSR:
135#ifdef SSR_DEC
136 return 0;
137#else
138 return -1;
139#endif
140 case LTP:
141#ifdef LTP_DEC
142 return 0;
143#else
144 return -1;
145#endif
146
147 /* ER object types */
148#ifdef ERROR_RESILIENCE
149 case ER_LC:
150#ifdef DRM
151 case DRM_ER_LC:
152#endif
153 return 0;
154 case ER_LTP:
155#ifdef LTP_DEC
156 return 0;
157#else
158 return -1;
159#endif
160 case LD:
161#ifdef LD_DEC
162 return 0;
163#else
164 return -1;
165#endif
166#endif
167 }
168
169 return -1;
170}
171
172static const uint8_t Parity [256] = { // parity
173 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
174 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
175 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
176 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
177 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
178 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
179 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
180 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0
181};
182
183static uint32_t __r1 = 1;
184static uint32_t __r2 = 1;
185
186
187/*
188 * This is a simple random number generator with good quality for audio purposes.
189 * It consists of two polycounters with opposite rotation direction and different
190 * periods. The periods are coprime, so the total period is the product of both.
191 *
192 * -------------------------------------------------------------------------------------------------
193 * +-> |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0|
194 * | -------------------------------------------------------------------------------------------------
195 * | | | | | | |
196 * | +--+--+--+-XOR-+--------+
197 * | |
198 * +--------------------------------------------------------------------------------------+
199 *
200 * -------------------------------------------------------------------------------------------------
201 * |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0| <-+
202 * ------------------------------------------------------------------------------------------------- |
203 * | | | | |
204 * +--+----XOR----+--+ |
205 * | |
206 * +----------------------------------------------------------------------------------------+
207 *
208 *
209 * The first has an period of 3*5*17*257*65537, the second of 7*47*73*178481,
210 * which gives a period of 18.410.713.077.675.721.215. The result is the
211 * XORed values of both generators.
212 */
213uint32_t random_int(void)
214{
215 uint32_t t1, t2, t3, t4;
216
217 t3 = t1 = __r1; t4 = t2 = __r2; // Parity calculation is done via table lookup, this is also available
218 t1 &= 0xF5; t2 >>= 25; // on CPUs without parity, can be implemented in C and avoid unpredictable
219 t1 = Parity [t1]; t2 &= 0x63; // jumps and slow rotate through the carry flag operations.
220 t1 <<= 31; t2 = Parity [t2];
221
222 return (__r1 = (t3 >> 1) | t1 ) ^ (__r2 = (t4 + t4) | t2 );
223}
224
225#define floor_log2(x) bs_generic(x, BS_LOG2)
226
227#ifdef FIXED_POINT
228
229#define TABLE_BITS 6
230/* just take the maximum number of bits for interpolation */
231#define INTERP_BITS (REAL_BITS-TABLE_BITS)
232
233static const real_t pow2_tab[] ICONST_ATTR = {
234 REAL_CONST(1.000000000000000), REAL_CONST(1.010889286051701), REAL_CONST(1.021897148654117),
235 REAL_CONST(1.033024879021228), REAL_CONST(1.044273782427414), REAL_CONST(1.055645178360557),
236 REAL_CONST(1.067140400676824), REAL_CONST(1.078760797757120), REAL_CONST(1.090507732665258),
237 REAL_CONST(1.102382583307841), REAL_CONST(1.114386742595892), REAL_CONST(1.126521618608242),
238 REAL_CONST(1.138788634756692), REAL_CONST(1.151189229952983), REAL_CONST(1.163724858777578),
239 REAL_CONST(1.176396991650281), REAL_CONST(1.189207115002721), REAL_CONST(1.202156731452703),
240 REAL_CONST(1.215247359980469), REAL_CONST(1.228480536106870), REAL_CONST(1.241857812073484),
241 REAL_CONST(1.255380757024691), REAL_CONST(1.269050957191733), REAL_CONST(1.282870016078778),
242 REAL_CONST(1.296839554651010), REAL_CONST(1.310961211524764), REAL_CONST(1.325236643159741),
243 REAL_CONST(1.339667524053303), REAL_CONST(1.354255546936893), REAL_CONST(1.369002422974591),
244 REAL_CONST(1.383909881963832), REAL_CONST(1.398979672538311), REAL_CONST(1.414213562373095),
245 REAL_CONST(1.429613338391970), REAL_CONST(1.445180806977047), REAL_CONST(1.460917794180647),
246 REAL_CONST(1.476826145939499), REAL_CONST(1.492907728291265), REAL_CONST(1.509164427593423),
247 REAL_CONST(1.525598150744538), REAL_CONST(1.542210825407941), REAL_CONST(1.559004400237837),
248 REAL_CONST(1.575980845107887), REAL_CONST(1.593142151342267), REAL_CONST(1.610490331949254),
249 REAL_CONST(1.628027421857348), REAL_CONST(1.645755478153965), REAL_CONST(1.663676580326736),
250 REAL_CONST(1.681792830507429), REAL_CONST(1.700106353718524), REAL_CONST(1.718619298122478),
251 REAL_CONST(1.737333835273706), REAL_CONST(1.756252160373300), REAL_CONST(1.775376492526521),
252 REAL_CONST(1.794709075003107), REAL_CONST(1.814252175500399), REAL_CONST(1.834008086409342),
253 REAL_CONST(1.853979125083386), REAL_CONST(1.874167634110300), REAL_CONST(1.894575981586966),
254 REAL_CONST(1.915206561397147), REAL_CONST(1.936061793492294), REAL_CONST(1.957144124175400),
255 REAL_CONST(1.978456026387951), REAL_CONST(2.000000000000000)
256};
257
258static const real_t log2_tab[] ICONST_ATTR_FAAD_LARGE_IRAM = {
259 REAL_CONST(0.000000000000000), REAL_CONST(0.022367813028455), REAL_CONST(0.044394119358453),
260 REAL_CONST(0.066089190457772), REAL_CONST(0.087462841250339), REAL_CONST(0.108524456778169),
261 REAL_CONST(0.129283016944966), REAL_CONST(0.149747119504682), REAL_CONST(0.169925001442312),
262 REAL_CONST(0.189824558880017), REAL_CONST(0.209453365628950), REAL_CONST(0.228818690495881),
263 REAL_CONST(0.247927513443585), REAL_CONST(0.266786540694901), REAL_CONST(0.285402218862248),
264 REAL_CONST(0.303780748177103), REAL_CONST(0.321928094887362), REAL_CONST(0.339850002884625),
265 REAL_CONST(0.357552004618084), REAL_CONST(0.375039431346925), REAL_CONST(0.392317422778760),
266 REAL_CONST(0.409390936137702), REAL_CONST(0.426264754702098), REAL_CONST(0.442943495848728),
267 REAL_CONST(0.459431618637297), REAL_CONST(0.475733430966398), REAL_CONST(0.491853096329675),
268 REAL_CONST(0.507794640198696), REAL_CONST(0.523561956057013), REAL_CONST(0.539158811108031),
269 REAL_CONST(0.554588851677637), REAL_CONST(0.569855608330948), REAL_CONST(0.584962500721156),
270 REAL_CONST(0.599912842187128), REAL_CONST(0.614709844115208), REAL_CONST(0.629356620079610),
271 REAL_CONST(0.643856189774725), REAL_CONST(0.658211482751795), REAL_CONST(0.672425341971496),
272 REAL_CONST(0.686500527183218), REAL_CONST(0.700439718141092), REAL_CONST(0.714245517666123),
273 REAL_CONST(0.727920454563199), REAL_CONST(0.741466986401147), REAL_CONST(0.754887502163469),
274 REAL_CONST(0.768184324776926), REAL_CONST(0.781359713524660), REAL_CONST(0.794415866350106),
275 REAL_CONST(0.807354922057604), REAL_CONST(0.820178962415188), REAL_CONST(0.832890014164742),
276 REAL_CONST(0.845490050944375), REAL_CONST(0.857980995127572), REAL_CONST(0.870364719583405),
277 REAL_CONST(0.882643049361841), REAL_CONST(0.894817763307943), REAL_CONST(0.906890595608519),
278 REAL_CONST(0.918863237274595), REAL_CONST(0.930737337562886), REAL_CONST(0.942514505339240),
279 REAL_CONST(0.954196310386875), REAL_CONST(0.965784284662087), REAL_CONST(0.977279923499917),
280 REAL_CONST(0.988684686772166), REAL_CONST(1.000000000000000)
281};
282
283uint32_t pow2_fix(real_t val)
284{
285 uint32_t x1, x2;
286 uint32_t errcorr;
287 uint32_t index_frac;
288 uint32_t retval;
289 int32_t whole = (val >> REAL_BITS);
290
291 /* rest = [0..1] */
292 int32_t rest = val - (whole << REAL_BITS);
293
294 /* index into pow2_tab */
295 int32_t index = (rest >> (REAL_BITS-TABLE_BITS)) & ((1<<TABLE_BITS)-1);
296
297
298 if (val == 0)
299 return (1<<REAL_BITS);
300
301 /* leave INTERP_BITS bits */
302 index_frac = rest >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
303 index_frac = index_frac & ((1<<INTERP_BITS)-1);
304
305 if (whole >= 0)
306 retval = REAL_CONST(1) << whole;
307 else
308 retval = REAL_CONST(1) >> -whole;
309
310 x1 = pow2_tab[index ];
311 x2 = pow2_tab[index + 1];
312 errcorr = (index_frac*(x2-x1)) >> INTERP_BITS;
313
314 retval = MUL_R(retval, (errcorr + x1));
315
316 return retval;
317}
318
319uint32_t pow2_int(real_t val)
320{
321 uint32_t x1, x2;
322 uint32_t errcorr;
323 uint32_t index_frac;
324 uint32_t retval;
325 int32_t whole = (val >> REAL_BITS);
326
327 /* rest = [0..1] */
328 int32_t rest = val - (whole << REAL_BITS);
329
330 /* index into pow2_tab */
331 int32_t index = (rest >> (REAL_BITS-TABLE_BITS)) & ((1<<TABLE_BITS)-1);
332
333
334 if (val == 0)
335 return 1;
336
337 /* leave INTERP_BITS bits */
338 index_frac = rest >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
339 index_frac = index_frac & ((1<<INTERP_BITS)-1);
340
341 if (whole >= 0)
342 retval = 1 << whole;
343 else
344 retval = 1 >> -whole;
345
346 x1 = pow2_tab[index ];
347 x2 = pow2_tab[index + 1];
348 errcorr = (index_frac*(x2-x1)) >> INTERP_BITS;
349
350 retval = MUL_R(retval, (errcorr + x1));
351
352 return retval;
353}
354
355/* ld(x) = ld(x*y/y) = ld(x/y) + ld(y), with y=2^N and [1 <= (x/y) < 2] */
356int32_t log2_int(uint32_t val)
357{
358 uint32_t frac;
359 int32_t exp = 0;
360 uint32_t index;
361 uint32_t index_frac;
362 uint32_t x1, x2;
363 uint32_t errcorr;
364
365 /* error */
366 if (val == 0)
367 return -10000;
368
369 exp = floor_log2(val);
370 exp -= REAL_BITS;
371
372 /* frac = [1..2] */
373 if (exp >= 0)
374 frac = val >> exp;
375 else
376 frac = val << -exp;
377
378 /* index in the log2 table */
379 index = frac >> (REAL_BITS-TABLE_BITS);
380
381 /* leftover part for linear interpolation */
382 index_frac = frac & ((1<<(REAL_BITS-TABLE_BITS))-1);
383
384 /* leave INTERP_BITS bits */
385 index_frac = index_frac >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
386
387 x1 = log2_tab[index & ((1<<TABLE_BITS)-1)];
388 x2 = log2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
389
390 /* linear interpolation */
391 /* retval = exp + ((index_frac)*x2 + (1-index_frac)*x1) */
392
393 errcorr = (index_frac * (x2-x1)) >> INTERP_BITS;
394
395 return ((exp+REAL_BITS) << REAL_BITS) + errcorr + x1;
396}
397
398/* ld(x) = ld(x*y/y) = ld(x/y) + ld(y), with y=2^N and [1 <= (x/y) < 2] */
399real_t log2_fix(uint32_t val)
400{
401 uint32_t frac;
402 int8_t exp = 0;
403 uint32_t index;
404 uint32_t index_frac;
405 uint32_t x1, x2;
406 uint32_t errcorr;
407
408 /* error */
409 if (val == 0)
410 return -100000;
411
412 exp = floor_log2(val);
413 exp -= REAL_BITS;
414
415 /* frac = [1..2] */
416 if (exp >= 0)
417 frac = val >> exp;
418 else
419 frac = val << -exp;
420
421 /* index in the log2 table */
422 index = frac >> (REAL_BITS-TABLE_BITS);
423
424 /* leftover part for linear interpolation */
425 index_frac = frac & ((1<<(REAL_BITS-TABLE_BITS))-1);
426
427 /* leave INTERP_BITS bits */
428 index_frac = index_frac >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
429
430 x1 = log2_tab[index & ((1<<TABLE_BITS)-1)];
431 x2 = log2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
432
433 /* linear interpolation */
434 /* retval = exp + ((index_frac)*x2 + (1-index_frac)*x1) */
435
436 errcorr = (index_frac * (x2-x1)) >> INTERP_BITS;
437
438 return (exp << REAL_BITS) + errcorr + x1;
439}
440#endif