summaryrefslogtreecommitdiff
path: root/lib/rbcodec/codecs/libatrac/atrac3.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/rbcodec/codecs/libatrac/atrac3.c')
-rw-r--r--lib/rbcodec/codecs/libatrac/atrac3.c1293
1 files changed, 1293 insertions, 0 deletions
diff --git a/lib/rbcodec/codecs/libatrac/atrac3.c b/lib/rbcodec/codecs/libatrac/atrac3.c
new file mode 100644
index 0000000000..bb52dd4cf0
--- /dev/null
+++ b/lib/rbcodec/codecs/libatrac/atrac3.c
@@ -0,0 +1,1293 @@
1/*
2 * Atrac 3 compatible decoder
3 * Copyright (c) 2006-2008 Maxim Poliakovski
4 * Copyright (c) 2006-2008 Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file libavcodec/atrac3.c
25 * Atrac 3 compatible decoder.
26 * This decoder handles Sony's ATRAC3 data.
27 *
28 * Container formats used to store atrac 3 data:
29 * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
30 *
31 * To use this decoder, a calling application must supply the extradata
32 * bytes provided in the containers above.
33 */
34
35#include <math.h>
36#include <stddef.h>
37#include <stdio.h>
38
39#include "atrac3.h"
40#include "atrac3data.h"
41#include "atrac3data_fixed.h"
42#include "fixp_math.h"
43
44#define JOINT_STEREO 0x12
45#define STEREO 0x2
46
47#ifdef ROCKBOX
48#undef DEBUGF
49#define DEBUGF(...)
50#endif /* ROCKBOX */
51
52/* FFMAX/MIN/SWAP and av_clip were taken from libavutil/common.h */
53#define FFMAX(a,b) ((a) > (b) ? (a) : (b))
54#define FFMIN(a,b) ((a) > (b) ? (b) : (a))
55#define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0)
56
57#if defined(CPU_ARM) && (ARM_ARCH >= 5)
58 #define QMFWIN_TYPE int16_t /* ARMv5e+ uses 32x16 multiplication */
59#else
60 #define QMFWIN_TYPE int32_t
61#endif
62
63static VLC spectral_coeff_tab[7] IBSS_ATTR_LARGE_IRAM;
64static QMFWIN_TYPE qmf_window[48] IBSS_ATTR MEM_ALIGN_ATTR;
65static int32_t atrac3_spectrum [2][1024] IBSS_ATTR MEM_ALIGN_ATTR;
66static int32_t atrac3_IMDCT_buf[2][ 512] IBSS_ATTR MEM_ALIGN_ATTR;
67static int32_t atrac3_prevFrame[2][1024] IBSS_ATTR MEM_ALIGN_ATTR;
68static channel_unit channel_units[2] IBSS_ATTR_LARGE_IRAM;
69static VLC_TYPE atrac3_vlc_table[4096][2] IBSS_ATTR_LARGE_IRAM;
70static int vlcs_initialized = 0;
71
72
73
74/**
75 * Matrixing within quadrature mirror synthesis filter.
76 *
77 * @param p3 output buffer
78 * @param inlo lower part of spectrum
79 * @param inhi higher part of spectrum
80 * @param nIn size of spectrum buffer
81 */
82
83#if defined(CPU_ARM)
84 extern void
85 atrac3_iqmf_matrixing(int32_t *p3,
86 int32_t *inlo,
87 int32_t *inhi,
88 unsigned int nIn);
89#else
90 static inline void
91 atrac3_iqmf_matrixing(int32_t *p3,
92 int32_t *inlo,
93 int32_t *inhi,
94 unsigned int nIn)
95 {
96 uint32_t i;
97 for(i=0; i<nIn; i+=2){
98 p3[2*i+0] = inlo[i ] + inhi[i ];
99 p3[2*i+1] = inlo[i ] - inhi[i ];
100 p3[2*i+2] = inlo[i+1] + inhi[i+1];
101 p3[2*i+3] = inlo[i+1] - inhi[i+1];
102 }
103 }
104#endif
105
106
107/**
108 * Matrixing within quadrature mirror synthesis filter.
109 *
110 * @param out output buffer
111 * @param in input buffer
112 * @param win windowing coefficients
113 * @param nIn size of spectrum buffer
114 * Reference implementation:
115 *
116 * for (j = nIn; j != 0; j--) {
117 * s1 = fixmul32(in[0], win[0]);
118 * s2 = fixmul32(in[1], win[1]);
119 * for (i = 2; i < 48; i += 2) {
120 * s1 += fixmul31(in[i ], win[i ]);
121 * s2 += fixmul31(in[i+1], win[i+1]);
122 * }
123 * out[0] = s2;
124 * out[1] = s1;
125 * in += 2;
126 * out += 2;
127 * }
128 */
129
130#if defined(CPU_ARM) && (ARM_ARCH >= 5)
131 extern void
132 atrac3_iqmf_dewindowing_armv5e(int32_t *out,
133 int32_t *in,
134 int16_t *win,
135 unsigned int nIn);
136 static inline void
137 atrac3_iqmf_dewindowing(int32_t *out,
138 int32_t *in,
139 int16_t *win,
140 unsigned int nIn)
141 {
142 atrac3_iqmf_dewindowing_armv5e(out, in, win, nIn);
143
144 }
145
146
147#elif defined(CPU_ARM)
148 extern void
149 atrac3_iqmf_dewindowing(int32_t *out,
150 int32_t *in,
151 int32_t *win,
152 unsigned int nIn);
153
154#elif defined (CPU_COLDFIRE)
155 #define MULTIPLY_ADD_BLOCK \
156 "movem.l (%[win]), %%d0-%%d7 \n\t" \
157 "lea.l (8*4, %[win]), %[win] \n\t" \
158 "mac.l %%d0, %%a5, (%[in])+, %%a5, %%acc0\n\t" \
159 "mac.l %%d1, %%a5, (%[in])+, %%a5, %%acc1\n\t" \
160 "mac.l %%d2, %%a5, (%[in])+, %%a5, %%acc0\n\t" \
161 "mac.l %%d3, %%a5, (%[in])+, %%a5, %%acc1\n\t" \
162 "mac.l %%d4, %%a5, (%[in])+, %%a5, %%acc0\n\t" \
163 "mac.l %%d5, %%a5, (%[in])+, %%a5, %%acc1\n\t" \
164 "mac.l %%d6, %%a5, (%[in])+, %%a5, %%acc0\n\t" \
165 "mac.l %%d7, %%a5, (%[in])+, %%a5, %%acc1\n\t" \
166
167
168 static inline void
169 atrac3_iqmf_dewindowing(int32_t *out,
170 int32_t *in,
171 int32_t *win,
172 unsigned int nIn)
173 {
174 int32_t j;
175 int32_t *_in, *_win;
176 for (j = nIn; j != 0; j--, in+=2, out+=2) {
177 _in = in;
178 _win = win;
179
180 asm volatile (
181 "move.l (%[in])+, %%a5 \n\t" /* preload frist in value */
182 MULTIPLY_ADD_BLOCK /* 0.. 7 */
183 MULTIPLY_ADD_BLOCK /* 8..15 */
184 MULTIPLY_ADD_BLOCK /* 16..23 */
185 MULTIPLY_ADD_BLOCK /* 24..31 */
186 MULTIPLY_ADD_BLOCK /* 32..39 */
187 /* 40..47 */
188 "movem.l (%[win]), %%d0-%%d7 \n\t"
189 "mac.l %%d0, %%a5, (%[in])+, %%a5, %%acc0 \n\t"
190 "mac.l %%d1, %%a5, (%[in])+, %%a5, %%acc1 \n\t"
191 "mac.l %%d2, %%a5, (%[in])+, %%a5, %%acc0 \n\t"
192 "mac.l %%d3, %%a5, (%[in])+, %%a5, %%acc1 \n\t"
193 "mac.l %%d4, %%a5, (%[in])+, %%a5, %%acc0 \n\t"
194 "mac.l %%d5, %%a5, (%[in])+, %%a5, %%acc1 \n\t"
195 "mac.l %%d6, %%a5, (%[in])+, %%a5, %%acc0 \n\t"
196 "mac.l %%d7, %%a5, %%acc1 \n\t"
197 "movclr.l %%acc0, %%d1 \n\t" /* s1 */
198 "movclr.l %%acc1, %%d0 \n\t" /* s2 */
199 "movem.l %%d0-%%d1, (%[out]) \n\t"
200 : [in] "+a" (_in), [win] "+a" (_win)
201 : [out] "a" (out)
202 : "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "a5", "memory");
203 }
204 }
205#else
206 #define MULTIPLY_ADD_BLOCK(y1, y2, x, c, k) \
207 y1 += fixmul31(c[k], x[k]); k++; \
208 y2 += fixmul31(c[k], x[k]); k++; \
209 y1 += fixmul31(c[k], x[k]); k++; \
210 y2 += fixmul31(c[k], x[k]); k++; \
211 y1 += fixmul31(c[k], x[k]); k++; \
212 y2 += fixmul31(c[k], x[k]); k++; \
213 y1 += fixmul31(c[k], x[k]); k++; \
214 y2 += fixmul31(c[k], x[k]); k++;
215
216 static inline void
217 atrac3_iqmf_dewindowing(int32_t *out,
218 int32_t *in,
219 int32_t *win,
220 unsigned int nIn)
221 {
222 int32_t i, j, s1, s2;
223
224 for (j = nIn; j != 0; j--, in+=2, out+=2) {
225 s1 = s2 = i = 0;
226
227 MULTIPLY_ADD_BLOCK(s1, s2, in, win, i); /* 0.. 7 */
228 MULTIPLY_ADD_BLOCK(s1, s2, in, win, i); /* 8..15 */
229 MULTIPLY_ADD_BLOCK(s1, s2, in, win, i); /* 16..23 */
230 MULTIPLY_ADD_BLOCK(s1, s2, in, win, i); /* 24..31 */
231 MULTIPLY_ADD_BLOCK(s1, s2, in, win, i); /* 32..39 */
232 MULTIPLY_ADD_BLOCK(s1, s2, in, win, i); /* 40..47 */
233
234 out[0] = s2;
235 out[1] = s1;
236
237 }
238
239 }
240#endif
241
242
243/**
244 * IMDCT windowing.
245 *
246 * @param buffer sample buffer
247 * @param win window coefficients
248 */
249
250static inline void
251atrac3_imdct_windowing(int32_t *buffer,
252 const int32_t *win)
253{
254 int32_t i;
255 /* win[0..127] = win[511..384], win[128..383] = 1 */
256 for(i = 0; i<128; i++) {
257 buffer[ i] = fixmul31(win[i], buffer[ i]);
258 buffer[511-i] = fixmul31(win[i], buffer[511-i]);
259 }
260}
261
262
263/**
264 * Quadrature mirror synthesis filter.
265 *
266 * @param inlo lower part of spectrum
267 * @param inhi higher part of spectrum
268 * @param nIn size of spectrum buffer
269 * @param pOut out buffer
270 * @param delayBuf delayBuf buffer
271 * @param temp temp buffer
272 */
273
274static void iqmf (int32_t *inlo, int32_t *inhi, unsigned int nIn, int32_t *pOut, int32_t *delayBuf, int32_t *temp)
275{
276
277 /* Restore the delay buffer */
278 memcpy(temp, delayBuf, 46*sizeof(int32_t));
279
280 /* loop1: matrixing */
281 atrac3_iqmf_matrixing(temp + 46, inlo, inhi, nIn);
282
283 /* loop2: dewindowing */
284 atrac3_iqmf_dewindowing(pOut, temp, qmf_window, nIn);
285
286 /* Save the delay buffer */
287 memcpy(delayBuf, temp + (nIn << 1), 46*sizeof(int32_t));
288}
289
290
291/**
292 * Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
293 * caused by the reverse spectra of the QMF.
294 *
295 * @param pInput input
296 * @param pOutput output
297 * @param odd_band 1 if the band is an odd band
298 */
299
300static void IMLT(int32_t *pInput, int32_t *pOutput)
301{
302 /* Apply the imdct. */
303 ff_imdct_calc(9, pOutput, pInput);
304
305 /* Windowing. */
306 atrac3_imdct_windowing(pOutput, window_lookup);
307
308}
309
310
311/**
312 * Atrac 3 indata descrambling, only used for data coming from the rm container
313 *
314 * @param in pointer to 8 bit array of indata
315 * @param bits amount of bits
316 * @param out pointer to 8 bit array of outdata
317 */
318
319static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
320 int i, off;
321 uint32_t c;
322 const uint32_t* buf;
323 uint32_t* obuf = (uint32_t*) out;
324
325#if ((defined(TEST) || defined(SIMULATOR)) && !defined(CPU_ARM))
326 off = 0; /* no check for memory alignment of inbuffer */
327#else
328 off = (intptr_t)inbuffer & 3;
329#endif /* TEST */
330 buf = (const uint32_t*) (inbuffer - off);
331
332 c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
333 bytes += 3 + off;
334 for (i = 0; i < bytes/4; i++)
335 obuf[i] = c ^ buf[i];
336
337 return off;
338}
339
340
341static void init_atrac3_transforms(void)
342{
343 int32_t s;
344 int i;
345
346 /* Generate the mdct window, for details see
347 * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
348
349 /* mdct window had been generated and saved as a lookup table in atrac3data_fixed.h */
350
351 /* Generate the QMF window. */
352 for (i=0 ; i<24; i++) {
353 s = qmf_48tap_half_fix[i] << 1;
354 #if defined(CPU_ARM) && (ARM_ARCH >= 5)
355 qmf_window[i] = qmf_window[47-i] = (int16_t)((s+(1<<15))>>16);
356 #else
357 qmf_window[i] = qmf_window[47-i] = s;
358 #endif
359 }
360
361}
362
363
364/**
365 * Mantissa decoding
366 *
367 * @param gb the GetBit context
368 * @param selector what table is the output values coded with
369 * @param codingFlag constant length coding or variable length coding
370 * @param mantissas mantissa output table
371 * @param numCodes amount of values to get
372 */
373
374static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
375{
376 int numBits, cnt, code, huffSymb;
377
378 if (selector == 1)
379 numCodes /= 2;
380
381 if (codingFlag != 0) {
382 /* constant length coding (CLC) */
383 numBits = CLCLengthTab[selector];
384
385 if (selector > 1) {
386 for (cnt = 0; cnt < numCodes; cnt++) {
387 if (numBits)
388 code = get_sbits(gb, numBits);
389 else
390 code = 0;
391 mantissas[cnt] = code;
392 }
393 } else {
394 for (cnt = 0; cnt < numCodes; cnt++) {
395 if (numBits)
396 code = get_bits(gb, numBits); /* numBits is always 4 in this case */
397 else
398 code = 0;
399 mantissas[cnt*2] = seTab_0[code >> 2];
400 mantissas[cnt*2+1] = seTab_0[code & 3];
401 }
402 }
403 } else {
404 /* variable length coding (VLC) */
405 if (selector != 1) {
406 for (cnt = 0; cnt < numCodes; cnt++) {
407 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
408 huffSymb += 1;
409 code = huffSymb >> 1;
410 if (huffSymb & 1)
411 code = -code;
412 mantissas[cnt] = code;
413 }
414 } else {
415 for (cnt = 0; cnt < numCodes; cnt++) {
416 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
417 mantissas[cnt*2] = decTable1[huffSymb*2];
418 mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
419 }
420 }
421 }
422}
423
424
425/**
426 * Requantize the spectrum.
427 *
428 * @param *mantissas pointer to mantissas for each spectral line
429 * @param pOut requantized band spectrum
430 * @param first first spectral line in subband
431 * @param last last spectral line in subband
432 * @param SF scalefactor for all spectral lines of this band
433 */
434
435static void inverseQuantizeSpectrum(int *mantissas, int32_t *pOut,
436 int32_t first, int32_t last, int32_t SF)
437{
438 int *pIn = mantissas;
439
440 /* Inverse quantize the coefficients. */
441 if((first/256) &1) {
442 /* Odd band - Reverse coefficients */
443 do {
444 pOut[last--] = fixmul16(*pIn++, SF);
445 pOut[last--] = fixmul16(*pIn++, SF);
446 pOut[last--] = fixmul16(*pIn++, SF);
447 pOut[last--] = fixmul16(*pIn++, SF);
448 pOut[last--] = fixmul16(*pIn++, SF);
449 pOut[last--] = fixmul16(*pIn++, SF);
450 pOut[last--] = fixmul16(*pIn++, SF);
451 pOut[last--] = fixmul16(*pIn++, SF);
452 } while (last>first);
453 } else {
454 /* Even band - Do not reverse coefficients */
455 do {
456 pOut[first++] = fixmul16(*pIn++, SF);
457 pOut[first++] = fixmul16(*pIn++, SF);
458 pOut[first++] = fixmul16(*pIn++, SF);
459 pOut[first++] = fixmul16(*pIn++, SF);
460 pOut[first++] = fixmul16(*pIn++, SF);
461 pOut[first++] = fixmul16(*pIn++, SF);
462 pOut[first++] = fixmul16(*pIn++, SF);
463 pOut[first++] = fixmul16(*pIn++, SF);
464 } while (first<last);
465 }
466}
467
468
469/**
470 * Restore the quantized band spectrum coefficients
471 *
472 * @param gb the GetBit context
473 * @param pOut decoded band spectrum
474 * @return outSubbands subband counter, fix for broken specification/files
475 */
476
477static int decodeSpectrum (GetBitContext *gb, int32_t *pOut) ICODE_ATTR_LARGE_IRAM;
478static int decodeSpectrum (GetBitContext *gb, int32_t *pOut)
479{
480 int numSubbands, codingMode, cnt, first, last, subbWidth;
481 int subband_vlc_index[32], SF_idxs[32];
482 int mantissas[128];
483 int32_t SF;
484
485 numSubbands = get_bits(gb, 5); /* number of coded subbands */
486 codingMode = get_bits1(gb); /* coding Mode: 0 - VLC/ 1-CLC */
487
488 /* Get the VLC selector table for the subbands, 0 means not coded. */
489 for (cnt = 0; cnt <= numSubbands; cnt++)
490 subband_vlc_index[cnt] = get_bits(gb, 3);
491
492 /* Read the scale factor indexes from the stream. */
493 for (cnt = 0; cnt <= numSubbands; cnt++) {
494 if (subband_vlc_index[cnt] != 0)
495 SF_idxs[cnt] = get_bits(gb, 6);
496 }
497
498 for (cnt = 0; cnt <= numSubbands; cnt++) {
499 first = subbandTab[cnt];
500 last = subbandTab[cnt+1];
501
502 subbWidth = last - first;
503
504 if (subband_vlc_index[cnt] != 0) {
505 /* Decode spectral coefficients for this subband. */
506 /* TODO: This can be done faster is several blocks share the
507 * same VLC selector (subband_vlc_index) */
508 readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
509
510 /* Decode the scale factor for this subband. */
511 SF = fixmul31(SFTable_fixed[SF_idxs[cnt]], iMaxQuant_fix[subband_vlc_index[cnt]]);
512 /* Remark: Hardcoded hack to add 2 bits (empty) fract part to internal sample
513 * representation. Needed for higher accuracy in internal calculations as
514 * well as for DSP configuration. See also: ../atrac3_rm.c, DSP_SET_SAMPLE_DEPTH
515 */
516 SF <<= 2;
517
518 /* Inverse quantize the coefficients. */
519 inverseQuantizeSpectrum(mantissas, pOut, first, last, SF);
520
521 } else {
522 /* This subband was not coded, so zero the entire subband. */
523 memset(pOut+first, 0, subbWidth*sizeof(int32_t));
524 }
525 }
526
527 /* Clear the subbands that were not coded. */
528 first = subbandTab[cnt];
529 memset(pOut+first, 0, (1024 - first) * sizeof(int32_t));
530 return numSubbands;
531}
532
533
534/**
535 * Restore the quantized tonal components
536 *
537 * @param gb the GetBit context
538 * @param pComponent tone component
539 * @param numBands amount of coded bands
540 */
541
542static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
543{
544 int i,j,k,cnt;
545 int components, coding_mode_selector, coding_mode, coded_values_per_component;
546 int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
547 int band_flags[4], mantissa[8];
548 int32_t *pCoef;
549 int32_t scalefactor;
550 int component_count = 0;
551
552 components = get_bits(gb,5);
553
554 /* no tonal components */
555 if (components == 0)
556 return 0;
557
558 coding_mode_selector = get_bits(gb,2);
559 if (coding_mode_selector == 2)
560 return -1;
561
562 coding_mode = coding_mode_selector & 1;
563
564 for (i = 0; i < components; i++) {
565 for (cnt = 0; cnt <= numBands; cnt++)
566 band_flags[cnt] = get_bits1(gb);
567
568 coded_values_per_component = get_bits(gb,3);
569
570 quant_step_index = get_bits(gb,3);
571 if (quant_step_index <= 1)
572 return -1;
573
574 if (coding_mode_selector == 3)
575 coding_mode = get_bits1(gb);
576
577 for (j = 0; j < (numBands + 1) * 4; j++) {
578 if (band_flags[j >> 2] == 0)
579 continue;
580
581 coded_components = get_bits(gb,3);
582
583 for (k=0; k<coded_components; k++) {
584 sfIndx = get_bits(gb,6);
585 pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
586 max_coded_values = 1024 - pComponent[component_count].pos;
587 coded_values = coded_values_per_component + 1;
588 coded_values = FFMIN(max_coded_values,coded_values);
589
590 scalefactor = fixmul31(SFTable_fixed[sfIndx], iMaxQuant_fix[quant_step_index]);
591 /* Remark: Hardcoded hack to add 2 bits (empty) fract part to internal sample
592 * representation. Needed for higher accuracy in internal calculations as
593 * well as for DSP configuration. See also: ../atrac3_rm.c, DSP_SET_SAMPLE_DEPTH
594 */
595 scalefactor <<= 2;
596
597 readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
598
599 pComponent[component_count].numCoefs = coded_values;
600
601 /* inverse quant */
602 pCoef = pComponent[component_count].coef;
603 for (cnt = 0; cnt < coded_values; cnt++)
604 pCoef[cnt] = fixmul16(mantissa[cnt], scalefactor);
605
606 component_count++;
607 }
608 }
609 }
610
611 return component_count;
612}
613
614
615/**
616 * Decode gain parameters for the coded bands
617 *
618 * @param gb the GetBit context
619 * @param pGb the gainblock for the current band
620 * @param numBands amount of coded bands
621 */
622
623static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
624{
625 int i, cf, numData;
626 int *pLevel, *pLoc;
627
628 gain_info *pGain = pGb->gBlock;
629
630 for (i=0 ; i<=numBands; i++)
631 {
632 numData = get_bits(gb,3);
633 pGain[i].num_gain_data = numData;
634 pLevel = pGain[i].levcode;
635 pLoc = pGain[i].loccode;
636
637 for (cf = 0; cf < numData; cf++){
638 pLevel[cf]= get_bits(gb,4);
639 pLoc [cf]= get_bits(gb,5);
640 if(cf && pLoc[cf] <= pLoc[cf-1])
641 return -1;
642 }
643 }
644
645 /* Clear the unused blocks. */
646 for (; i<4 ; i++)
647 pGain[i].num_gain_data = 0;
648
649 return 0;
650}
651
652
653/**
654 * Apply fix (constant) gain and overlap for sample[start...255].
655 *
656 * @param pIn input buffer
657 * @param pPrev previous buffer to perform overlap against
658 * @param pOut output buffer
659 * @param start index to start with (always a multiple of 8)
660 * @param gain gain to apply
661 */
662
663static void applyFixGain (int32_t *pIn, int32_t *pPrev, int32_t *pOut,
664 int32_t start, int32_t gain)
665{
666 int32_t i = start;
667
668 /* start is always a multiple of 8 and therefore allows us to unroll the
669 * loop to 8 calculation per loop
670 */
671 if (ONE_16 == gain) {
672 /* gain1 = 1.0 -> no multiplication needed, just adding */
673 /* Remark: This path is called >90%. */
674 while (i<256) {
675 pOut[i] = pIn[i] + pPrev[i]; i++;
676 pOut[i] = pIn[i] + pPrev[i]; i++;
677 pOut[i] = pIn[i] + pPrev[i]; i++;
678 pOut[i] = pIn[i] + pPrev[i]; i++;
679 pOut[i] = pIn[i] + pPrev[i]; i++;
680 pOut[i] = pIn[i] + pPrev[i]; i++;
681 pOut[i] = pIn[i] + pPrev[i]; i++;
682 pOut[i] = pIn[i] + pPrev[i]; i++;
683 };
684 } else {
685 /* gain1 != 1.0 -> we need to do a multiplication */
686 /* Remark: This path is called seldom. */
687 while (i<256) {
688 pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
689 pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
690 pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
691 pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
692 pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
693 pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
694 pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
695 pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
696 };
697 }
698}
699
700
701/**
702 * Apply variable gain and overlap. Returns sample index after applying gain,
703 * resulting sample index is always a multiple of 8.
704 *
705 * @param pIn input buffer
706 * @param pPrev previous buffer to perform overlap against
707 * @param pOut output buffer
708 * @param start index to start with (always a multiple of 8)
709 * @param end end index for first loop (always a multiple of 8)
710 * @param gain1 current bands gain to apply
711 * @param gain2 next bands gain to apply
712 * @param gain_inc stepwise adaption from gain1 to gain2
713 */
714
715static int applyVariableGain (int32_t *pIn, int32_t *pPrev, int32_t *pOut,
716 int32_t start, int32_t end,
717 int32_t gain1, int32_t gain2, int32_t gain_inc)
718{
719 int32_t i = start;
720
721 /* Apply fix gains until end index is reached */
722 do {
723 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
724 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
725 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
726 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
727 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
728 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
729 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
730 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
731 } while (i < end);
732
733 /* Interpolation is done over next eight samples */
734 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
735 gain2 = fixmul16(gain2, gain_inc);
736 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
737 gain2 = fixmul16(gain2, gain_inc);
738 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
739 gain2 = fixmul16(gain2, gain_inc);
740 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
741 gain2 = fixmul16(gain2, gain_inc);
742 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
743 gain2 = fixmul16(gain2, gain_inc);
744 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
745 gain2 = fixmul16(gain2, gain_inc);
746 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
747 gain2 = fixmul16(gain2, gain_inc);
748 pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
749 gain2 = fixmul16(gain2, gain_inc);
750
751 return i;
752}
753
754
755/**
756 * Apply gain parameters and perform the MDCT overlapping part
757 *
758 * @param pIn input buffer
759 * @param pPrev previous buffer to perform overlap against
760 * @param pOut output buffer
761 * @param pGain1 current band gain info
762 * @param pGain2 next band gain info
763 */
764
765static void gainCompensateAndOverlap (int32_t *pIn, int32_t *pPrev, int32_t *pOut,
766 gain_info *pGain1, gain_info *pGain2)
767{
768 /* gain compensation function */
769 int32_t gain1, gain2, gain_inc;
770 int cnt, numdata, nsample, startLoc;
771
772 if (pGain2->num_gain_data == 0)
773 gain1 = ONE_16;
774 else
775 gain1 = (ONE_16<<4)>>(pGain2->levcode[0]);
776
777 if (pGain1->num_gain_data == 0) {
778 /* Remark: This path is called >90%. */
779 /* Apply gain for all samples from 0...255 */
780 applyFixGain(pIn, pPrev, pOut, 0, gain1);
781 } else {
782 /* Remark: This path is called seldom. */
783 numdata = pGain1->num_gain_data;
784 pGain1->loccode[numdata] = 32;
785 pGain1->levcode[numdata] = 4;
786
787 nsample = 0; /* starting loop with =0 */
788
789 for (cnt = 0; cnt < numdata; cnt++) {
790 startLoc = pGain1->loccode[cnt] * 8;
791
792 gain2 = (ONE_16<<4)>>(pGain1->levcode[cnt]);
793 gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
794
795 /* Apply variable gain (gain1 -> gain2) to samples */
796 nsample = applyVariableGain(pIn, pPrev, pOut, nsample, startLoc, gain1, gain2, gain_inc);
797 }
798 /* Apply gain for the residual samples from nsample...255 */
799 applyFixGain(pIn, pPrev, pOut, nsample, gain1);
800 }
801
802 /* Delay for the overlapping part. */
803 memcpy(pPrev, &pIn[256], 256*sizeof(int32_t));
804}
805
806
807/**
808 * Combine the tonal band spectrum and regular band spectrum
809 * Return position of the last tonal coefficient
810
811 *
812 * @param pSpectrum output spectrum buffer
813 * @param numComponents amount of tonal components
814 * @param pComponent tonal components for this band
815 */
816
817static int addTonalComponents (int32_t *pSpectrum, int numComponents, tonal_component *pComponent)
818{
819 int cnt, i, lastPos = -1;
820 int32_t *pOut;
821 int32_t *pIn;
822
823 for (cnt = 0; cnt < numComponents; cnt++){
824 lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
825 pIn = pComponent[cnt].coef;
826 pOut = &(pSpectrum[pComponent[cnt].pos]);
827
828 for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
829 pOut[i] += pIn[i];
830 }
831
832 return lastPos;
833}
834
835
836/**
837 * Linear equidistant interpolation between two points x and y. 7 interpolation
838 * points can be calculated.
839 * Result for s=0 is x
840 * Result for s=8 is y
841 *
842 * @param x first input point
843 * @param y second input point
844 * @param s index of interpolation point (0..7)
845 */
846
847/* rockbox: Not used anymore. Faster version defined below.
848#define INTERPOLATE_FP16(x, y, s) ((x) + fixmul16(((s*ONE_16)>>3), (((y) - (x)))))
849*/
850#define INTERPOLATE_FP16(x, y, s) ((x) + ((s*((y)-(x)))>>3))
851
852static void reverseMatrixing(int32_t *su1, int32_t *su2, int *pPrevCode, int *pCurrCode)
853{
854 int i, band, nsample, s1, s2;
855 int32_t c1, c2;
856 int32_t mc1_l, mc1_r, mc2_l, mc2_r;
857
858 for (i=0,band = 0; band < 4*256; band+=256,i++) {
859 s1 = pPrevCode[i];
860 s2 = pCurrCode[i];
861 nsample = 0;
862
863 if (s1 != s2) {
864 /* Selector value changed, interpolation needed. */
865 mc1_l = matrixCoeffs_fix[s1<<1];
866 mc1_r = matrixCoeffs_fix[(s1<<1)+1];
867 mc2_l = matrixCoeffs_fix[s2<<1];
868 mc2_r = matrixCoeffs_fix[(s2<<1)+1];
869
870 /* Interpolation is done over the first eight samples. */
871 for(; nsample < 8; nsample++) {
872 c1 = su1[band+nsample];
873 c2 = su2[band+nsample];
874 c2 = fixmul16(c1, INTERPOLATE_FP16(mc1_l, mc2_l, nsample)) + fixmul16(c2, INTERPOLATE_FP16(mc1_r, mc2_r, nsample));
875 su1[band+nsample] = c2;
876 su2[band+nsample] = (c1 << 1) - c2;
877 }
878 }
879
880 /* Apply the matrix without interpolation. */
881 switch (s2) {
882 case 0: /* M/S decoding */
883 for (; nsample < 256; nsample++) {
884 c1 = su1[band+nsample];
885 c2 = su2[band+nsample];
886 su1[band+nsample] = c2 << 1;
887 su2[band+nsample] = (c1 - c2) << 1;
888 }
889 break;
890
891 case 1:
892 for (; nsample < 256; nsample++) {
893 c1 = su1[band+nsample];
894 c2 = su2[band+nsample];
895 su1[band+nsample] = (c1 + c2) << 1;
896 su2[band+nsample] = -1*(c2 << 1);
897 }
898 break;
899 case 2:
900 case 3:
901 for (; nsample < 256; nsample++) {
902 c1 = su1[band+nsample];
903 c2 = su2[band+nsample];
904 su1[band+nsample] = c1 + c2;
905 su2[band+nsample] = c1 - c2;
906 }
907 break;
908 default:
909 /* assert(0) */;
910 break;
911 }
912 }
913}
914
915static void getChannelWeights (int indx, int flag, int32_t ch[2]){
916 /* Read channel weights from table */
917 if (flag) {
918 /* Swap channel weights */
919 ch[1] = channelWeights0[indx&7];
920 ch[0] = channelWeights1[indx&7];
921 } else {
922 ch[0] = channelWeights0[indx&7];
923 ch[1] = channelWeights1[indx&7];
924 }
925}
926
927static void channelWeighting (int32_t *su1, int32_t *su2, int *p3)
928{
929 int band, nsample;
930 /* w[x][y] y=0 is left y=1 is right */
931 int32_t w[2][2];
932
933 if (p3[1] != 7 || p3[3] != 7){
934 getChannelWeights(p3[1], p3[0], w[0]);
935 getChannelWeights(p3[3], p3[2], w[1]);
936
937 for(band = 1; band < 4; band++) {
938 /* scale the channels by the weights */
939 for(nsample = 0; nsample < 8; nsample++) {
940 su1[band*256+nsample] = fixmul16(su1[band*256+nsample], INTERPOLATE_FP16(w[0][0], w[0][1], nsample));
941 su2[band*256+nsample] = fixmul16(su2[band*256+nsample], INTERPOLATE_FP16(w[1][0], w[1][1], nsample));
942 }
943
944 for(; nsample < 256; nsample++) {
945 su1[band*256+nsample] = fixmul16(su1[band*256+nsample], w[1][0]);
946 su2[band*256+nsample] = fixmul16(su2[band*256+nsample], w[1][1]);
947 }
948 }
949 }
950}
951
952/**
953 * Decode a Sound Unit
954 *
955 * @param gb the GetBit context
956 * @param pSnd the channel unit to be used
957 * @param pOut the decoded samples before IQMF
958 * @param channelNum channel number
959 * @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono)
960 */
961
962static int decodeChannelSoundUnit (GetBitContext *gb, channel_unit *pSnd, int32_t *pOut, int channelNum, int codingMode)
963{
964 int band, result=0, numSubbands, lastTonal, numBands;
965 if (codingMode == JOINT_STEREO && channelNum == 1) {
966 if (get_bits(gb,2) != 3) {
967 DEBUGF("JS mono Sound Unit id != 3.\n");
968 return -1;
969 }
970 } else {
971 if (get_bits(gb,6) != 0x28) {
972 DEBUGF("Sound Unit id != 0x28.\n");
973 return -1;
974 }
975 }
976
977 /* number of coded QMF bands */
978 pSnd->bandsCoded = get_bits(gb,2);
979
980 result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
981 if (result) return result;
982
983 pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
984 if (pSnd->numComponents == -1) return -1;
985
986 numSubbands = decodeSpectrum (gb, pSnd->spectrum);
987
988 /* Merge the decoded spectrum and tonal components. */
989 lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
990
991
992 /* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
993 numBands = (subbandTab[numSubbands] - 1) >> 8;
994 if (lastTonal >= 0)
995 numBands = FFMAX((lastTonal + 256) >> 8, numBands);
996
997 /* Reconstruct time domain samples. */
998 for (band=0; band<4; band++) {
999 /* Perform the IMDCT step without overlapping. */
1000 if (band <= numBands) {
1001 IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf);
1002 } else {
1003 memset(pSnd->IMDCT_buf, 0, 512 * sizeof(int32_t));
1004 }
1005
1006 /* gain compensation and overlapping */
1007 gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]),
1008 &((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]),
1009 &((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band]));
1010 }
1011
1012 /* Swap the gain control buffers for the next frame. */
1013 pSnd->gcBlkSwitch ^= 1;
1014
1015 return 0;
1016}
1017
1018/**
1019 * Frame handling
1020 *
1021 * @param q Atrac3 private context
1022 * @param databuf the input data
1023 */
1024
1025static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf, int off)
1026{
1027 int result, i;
1028 int32_t *p1, *p2, *p3, *p4;
1029 uint8_t *ptr1;
1030
1031 if (q->codingMode == JOINT_STEREO) {
1032
1033 /* channel coupling mode */
1034 /* decode Sound Unit 1 */
1035 init_get_bits(&q->gb,databuf,q->bits_per_frame);
1036
1037 result = decodeChannelSoundUnit(&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO);
1038 if (result != 0)
1039 return (result);
1040
1041 /* Framedata of the su2 in the joint-stereo mode is encoded in
1042 * reverse byte order so we need to swap it first. */
1043 if (databuf == q->decoded_bytes_buffer) {
1044 uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1;
1045 ptr1 = q->decoded_bytes_buffer;
1046 for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
1047 FFSWAP(uint8_t,*ptr1,*ptr2);
1048 }
1049 } else {
1050 const uint8_t *ptr2 = databuf+q->bytes_per_frame-1;
1051 for (i = 0; i < q->bytes_per_frame; i++)
1052 q->decoded_bytes_buffer[i] = *ptr2--;
1053 }
1054
1055 /* Skip the sync codes (0xF8). */
1056 ptr1 = q->decoded_bytes_buffer;
1057 for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
1058 if (i >= q->bytes_per_frame)
1059 return -1;
1060 }
1061
1062
1063 /* set the bitstream reader at the start of the second Sound Unit*/
1064 init_get_bits(&q->gb,ptr1,q->bits_per_frame);
1065
1066 /* Fill the Weighting coeffs delay buffer */
1067 memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
1068 q->weighting_delay[4] = get_bits1(&q->gb);
1069 q->weighting_delay[5] = get_bits(&q->gb,3);
1070
1071 for (i = 0; i < 4; i++) {
1072 q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
1073 q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
1074 q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
1075 }
1076
1077 /* Decode Sound Unit 2. */
1078 result = decodeChannelSoundUnit(&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO);
1079 if (result != 0)
1080 return (result);
1081
1082 /* Reconstruct the channel coefficients. */
1083 reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
1084
1085 channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay);
1086
1087 } else {
1088 /* normal stereo mode or mono */
1089 /* Decode the channel sound units. */
1090 for (i=0 ; i<q->channels ; i++) {
1091
1092 /* Set the bitstream reader at the start of a channel sound unit. */
1093 init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels)+off, (q->bits_per_frame)/q->channels);
1094
1095 result = decodeChannelSoundUnit(&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode);
1096 if (result != 0)
1097 return (result);
1098 }
1099 }
1100
1101 /* Apply the iQMF synthesis filter. */
1102 p1= q->outSamples;
1103 for (i=0 ; i<q->channels ; i++) {
1104 p2= p1+256;
1105 p3= p2+256;
1106 p4= p3+256;
1107 iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
1108 iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
1109 iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
1110 p1 +=1024;
1111 }
1112
1113 return 0;
1114}
1115
1116
1117/**
1118 * Atrac frame decoding
1119 *
1120 * @param rmctx pointer to the AVCodecContext
1121 */
1122
1123int atrac3_decode_frame(unsigned long block_align, ATRAC3Context *q,
1124 int *data_size, const uint8_t *buf, int buf_size) {
1125 int result = 0, off = 0;
1126 const uint8_t* databuf;
1127
1128 if ((unsigned)buf_size < block_align)
1129 return buf_size;
1130
1131 /* Check if we need to descramble and what buffer to pass on. */
1132 if (q->scrambled_stream) {
1133 off = decode_bytes(buf, q->decoded_bytes_buffer, block_align);
1134 databuf = q->decoded_bytes_buffer;
1135 } else {
1136 databuf = buf;
1137 }
1138
1139 result = decodeFrame(q, databuf, off);
1140
1141 if (result != 0) {
1142 DEBUGF("Frame decoding error!\n");
1143 return -1;
1144 }
1145
1146 if (q->channels == 1)
1147 *data_size = 1024 * sizeof(int32_t);
1148 else
1149 *data_size = 2048 * sizeof(int32_t);
1150
1151 return block_align;
1152}
1153
1154
1155/**
1156 * Atrac3 initialization
1157 *
1158 * @param rmctx pointer to the RMContext
1159 */
1160int atrac3_decode_init(ATRAC3Context *q, struct mp3entry *id3)
1161{
1162 int i;
1163 uint8_t *edata_ptr = (uint8_t*)&id3->id3v2buf;
1164
1165#if defined(CPU_COLDFIRE)
1166 coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
1167#endif
1168
1169 /* Take data from the RM container. */
1170 q->sample_rate = id3->frequency;
1171 q->channels = id3->channels;
1172 q->bit_rate = id3->bitrate * 1000;
1173 q->bits_per_frame = id3->bytesperframe * 8;
1174 q->bytes_per_frame = id3->bytesperframe;
1175
1176 /* Take care of the codec-specific extradata. */
1177
1178 if (id3->extradata_size == 14) {
1179 /* Parse the extradata, WAV format */
1180 DEBUGF("[0-1] %d\n",rm_get_uint16le(&edata_ptr[0])); /* Unknown value always 1 */
1181 q->samples_per_channel = rm_get_uint32le(&edata_ptr[2]);
1182 q->codingMode = rm_get_uint16le(&edata_ptr[6]);
1183 DEBUGF("[8-9] %d\n",rm_get_uint16le(&edata_ptr[8])); /* Dupe of coding mode */
1184 q->frame_factor = rm_get_uint16le(&edata_ptr[10]); /* Unknown always 1 */
1185 DEBUGF("[12-13] %d\n",rm_get_uint16le(&edata_ptr[12])); /* Unknown always 0 */
1186
1187 /* setup */
1188 q->samples_per_frame = 1024 * q->channels;
1189 q->atrac3version = 4;
1190 q->delay = 0x88E;
1191 if (q->codingMode)
1192 q->codingMode = JOINT_STEREO;
1193 else
1194 q->codingMode = STEREO;
1195 q->scrambled_stream = 0;
1196
1197 if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
1198 } else {
1199 DEBUGF("Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
1200 return -1;
1201 }
1202
1203 } else if (id3->extradata_size == 10) {
1204 /* Parse the extradata, RM format. */
1205 q->atrac3version = rm_get_uint32be(&edata_ptr[0]);
1206 q->samples_per_frame = rm_get_uint16be(&edata_ptr[4]);
1207 q->delay = rm_get_uint16be(&edata_ptr[6]);
1208 q->codingMode = rm_get_uint16be(&edata_ptr[8]);
1209
1210 q->samples_per_channel = q->samples_per_frame / q->channels;
1211 q->scrambled_stream = 1;
1212
1213 } else {
1214 DEBUGF("Unknown extradata size %d.\n",id3->extradata_size);
1215 }
1216 /* Check the extradata. */
1217
1218 if (q->atrac3version != 4) {
1219 DEBUGF("Version %d != 4.\n",q->atrac3version);
1220 return -1;
1221 }
1222
1223 if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) {
1224 DEBUGF("Unknown amount of samples per frame %d.\n",q->samples_per_frame);
1225 return -1;
1226 }
1227
1228 if (q->delay != 0x88E) {
1229 DEBUGF("Unknown amount of delay %x != 0x88E.\n",q->delay);
1230 return -1;
1231 }
1232
1233 if (q->codingMode == STEREO) {
1234 DEBUGF("Normal stereo detected.\n");
1235 } else if (q->codingMode == JOINT_STEREO) {
1236 DEBUGF("Joint stereo detected.\n");
1237 } else {
1238 DEBUGF("Unknown channel coding mode %x!\n",q->codingMode);
1239 return -1;
1240 }
1241
1242 if (id3->channels <= 0 || id3->channels > 2 ) {
1243 DEBUGF("Channel configuration error!\n");
1244 return -1;
1245 }
1246
1247
1248 if(id3->bytesperframe >= UINT16_MAX/2)
1249 return -1;
1250
1251
1252 /* Initialize the VLC tables. */
1253 if (!vlcs_initialized) {
1254 for (i=0 ; i<7 ; i++) {
1255 spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
1256 spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i];
1257 init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
1258 huff_bits[i], 1, 1,
1259 huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
1260 }
1261
1262 vlcs_initialized = 1;
1263
1264 }
1265
1266 init_atrac3_transforms();
1267
1268 /* init the joint-stereo decoding data */
1269 q->weighting_delay[0] = 0;
1270 q->weighting_delay[1] = 7;
1271 q->weighting_delay[2] = 0;
1272 q->weighting_delay[3] = 7;
1273 q->weighting_delay[4] = 0;
1274 q->weighting_delay[5] = 7;
1275
1276 for (i=0; i<4; i++) {
1277 q->matrix_coeff_index_prev[i] = 3;
1278 q->matrix_coeff_index_now[i] = 3;
1279 q->matrix_coeff_index_next[i] = 3;
1280 }
1281
1282 /* Link the iram'ed arrays to the decoder's data structure */
1283 q->pUnits = channel_units;
1284 q->pUnits[0].spectrum = &atrac3_spectrum [0][0];
1285 q->pUnits[1].spectrum = &atrac3_spectrum [1][0];
1286 q->pUnits[0].IMDCT_buf = &atrac3_IMDCT_buf[0][0];
1287 q->pUnits[1].IMDCT_buf = &atrac3_IMDCT_buf[1][0];
1288 q->pUnits[0].prevFrame = &atrac3_prevFrame[0][0];
1289 q->pUnits[1].prevFrame = &atrac3_prevFrame[1][0];
1290
1291 return 0;
1292}
1293