summaryrefslogtreecommitdiff
path: root/lib/fixedpoint/fixedpoint.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/fixedpoint/fixedpoint.c')
-rw-r--r--lib/fixedpoint/fixedpoint.c457
1 files changed, 457 insertions, 0 deletions
diff --git a/lib/fixedpoint/fixedpoint.c b/lib/fixedpoint/fixedpoint.c
new file mode 100644
index 0000000000..b5bbe68a95
--- /dev/null
+++ b/lib/fixedpoint/fixedpoint.c
@@ -0,0 +1,457 @@
1/***************************************************************************
2 * __________ __ ___.
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
7 * \/ \/ \/ \/ \/
8 * $Id$
9 *
10 * Copyright (C) 2006 Jens Arnold
11 *
12 * Fixed point library for plugins
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version 2
17 * of the License, or (at your option) any later version.
18 *
19 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
20 * KIND, either express or implied.
21 *
22 ****************************************************************************/
23#include "fixedpoint.h"
24#include <stdlib.h>
25#include <stdbool.h>
26#include <inttypes.h>
27
28#ifndef BIT_N
29#define BIT_N(n) (1U << (n))
30#endif
31
32/** TAKEN FROM ORIGINAL fixedpoint.h */
33/* Inverse gain of circular cordic rotation in s0.31 format. */
34static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */
35
36/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
37static const unsigned long atan_table[] = {
38 0x1fffffff, /* +0.785398163 (or pi/4) */
39 0x12e4051d, /* +0.463647609 */
40 0x09fb385b, /* +0.244978663 */
41 0x051111d4, /* +0.124354995 */
42 0x028b0d43, /* +0.062418810 */
43 0x0145d7e1, /* +0.031239833 */
44 0x00a2f61e, /* +0.015623729 */
45 0x00517c55, /* +0.007812341 */
46 0x0028be53, /* +0.003906230 */
47 0x00145f2e, /* +0.001953123 */
48 0x000a2f98, /* +0.000976562 */
49 0x000517cc, /* +0.000488281 */
50 0x00028be6, /* +0.000244141 */
51 0x000145f3, /* +0.000122070 */
52 0x0000a2f9, /* +0.000061035 */
53 0x0000517c, /* +0.000030518 */
54 0x000028be, /* +0.000015259 */
55 0x0000145f, /* +0.000007629 */
56 0x00000a2f, /* +0.000003815 */
57 0x00000517, /* +0.000001907 */
58 0x0000028b, /* +0.000000954 */
59 0x00000145, /* +0.000000477 */
60 0x000000a2, /* +0.000000238 */
61 0x00000051, /* +0.000000119 */
62 0x00000028, /* +0.000000060 */
63 0x00000014, /* +0.000000030 */
64 0x0000000a, /* +0.000000015 */
65 0x00000005, /* +0.000000007 */
66 0x00000002, /* +0.000000004 */
67 0x00000001, /* +0.000000002 */
68 0x00000000, /* +0.000000001 */
69 0x00000000, /* +0.000000000 */
70};
71
72/* Precalculated sine and cosine * 16384 (2^14) (fixed point 18.14) */
73static const short sin_table[91] =
74{
75 0, 285, 571, 857, 1142, 1427, 1712, 1996, 2280, 2563,
76 2845, 3126, 3406, 3685, 3963, 4240, 4516, 4790, 5062, 5334,
77 5603, 5871, 6137, 6401, 6663, 6924, 7182, 7438, 7691, 7943,
78 8191, 8438, 8682, 8923, 9161, 9397, 9630, 9860, 10086, 10310,
79 10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365,
80 12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043,
81 14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295,
82 15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082,
83 16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381,
84 16384
85};
86
87/**
88 * Implements sin and cos using CORDIC rotation.
89 *
90 * @param phase has range from 0 to 0xffffffff, representing 0 and
91 * 2*pi respectively.
92 * @param cos return address for cos
93 * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
94 * representing -1 and 1 respectively.
95 */
96long fp_sincos(unsigned long phase, long *cos)
97{
98 int32_t x, x1, y, y1;
99 unsigned long z, z1;
100 int i;
101
102 /* Setup initial vector */
103 x = cordic_circular_gain;
104 y = 0;
105 z = phase;
106
107 /* The phase has to be somewhere between 0..pi for this to work right */
108 if (z < 0xffffffff / 4) {
109 /* z in first quadrant, z += pi/2 to correct */
110 x = -x;
111 z += 0xffffffff / 4;
112 } else if (z < 3 * (0xffffffff / 4)) {
113 /* z in third quadrant, z -= pi/2 to correct */
114 z -= 0xffffffff / 4;
115 } else {
116 /* z in fourth quadrant, z -= 3pi/2 to correct */
117 x = -x;
118 z -= 3 * (0xffffffff / 4);
119 }
120
121 /* Each iteration adds roughly 1-bit of extra precision */
122 for (i = 0; i < 31; i++) {
123 x1 = x >> i;
124 y1 = y >> i;
125 z1 = atan_table[i];
126
127 /* Decided which direction to rotate vector. Pivot point is pi/2 */
128 if (z >= 0xffffffff / 4) {
129 x -= y1;
130 y += x1;
131 z -= z1;
132 } else {
133 x += y1;
134 y -= x1;
135 z += z1;
136 }
137 }
138
139 if (cos)
140 *cos = x;
141
142 return y;
143}
144
145/**
146 * Fixed point square root via Newton-Raphson.
147 * @param x square root argument.
148 * @param fracbits specifies number of fractional bits in argument.
149 * @return Square root of argument in same fixed point format as input.
150 *
151 * This routine has been modified to run longer for greater precision,
152 * but cuts calculation short if the answer is reached sooner.
153 */
154long fp_sqrt(long x, unsigned int fracbits)
155{
156 unsigned long xfp, b;
157 int n = 8; /* iteration limit (should terminate earlier) */
158
159 if (x <= 0)
160 return 0; /* no sqrt(neg), or just sqrt(0) = 0 */
161
162 /* Increase working precision by one bit */
163 xfp = x << 1;
164 fracbits++;
165
166 /* Get the midpoint between fracbits index and the highest bit index */
167 b = ((sizeof(xfp)*8-1) - __builtin_clzl(xfp) + fracbits) >> 1;
168 b = BIT_N(b);
169
170 do
171 {
172 unsigned long c = b;
173 b = (fp_div(xfp, b, fracbits) + b) >> 1;
174 if (c == b) break;
175 }
176 while (n-- > 0);
177
178 return b >> 1;
179}
180
181/* Accurate int sqrt with only elementary operations.
182 * Snagged from:
183 * http://www.devmaster.net/articles/fixed-point-optimizations/ */
184unsigned long isqrt(unsigned long x)
185{
186 /* Adding CLZ could optimize this further */
187 unsigned long g = 0;
188 int bshift = 15;
189 unsigned long b = 1ul << bshift;
190
191 do
192 {
193 unsigned long temp = (g + g + b) << bshift;
194
195 if (x > temp)
196 {
197 g += b;
198 x -= temp;
199 }
200
201 b >>= 1;
202 }
203 while (bshift--);
204
205 return g;
206}
207
208/**
209 * Fixed point sinus using a lookup table
210 * don't forget to divide the result by 16384 to get the actual sinus value
211 * @param val sinus argument in degree
212 * @return sin(val)*16384
213 */
214long fp14_sin(int val)
215{
216 val = (val+360)%360;
217 if (val < 181)
218 {
219 if (val < 91)/* phase 0-90 degree */
220 return (long)sin_table[val];
221 else/* phase 91-180 degree */
222 return (long)sin_table[180-val];
223 }
224 else
225 {
226 if (val < 271)/* phase 181-270 degree */
227 return -(long)sin_table[val-180];
228 else/* phase 270-359 degree */
229 return -(long)sin_table[360-val];
230 }
231 return 0;
232}
233
234/**
235 * Fixed point cosinus using a lookup table
236 * don't forget to divide the result by 16384 to get the actual cosinus value
237 * @param val sinus argument in degree
238 * @return cos(val)*16384
239 */
240long fp14_cos(int val)
241{
242 val = (val+360)%360;
243 if (val < 181)
244 {
245 if (val < 91)/* phase 0-90 degree */
246 return (long)sin_table[90-val];
247 else/* phase 91-180 degree */
248 return -(long)sin_table[val-90];
249 }
250 else
251 {
252 if (val < 271)/* phase 181-270 degree */
253 return -(long)sin_table[270-val];
254 else/* phase 270-359 degree */
255 return (long)sin_table[val-270];
256 }
257 return 0;
258}
259
260/**
261 * Fixed-point natural log
262 * taken from http://www.quinapalus.com/efunc.html
263 * "The code assumes integers are at least 32 bits long. The (positive)
264 * argument and the result of the function are both expressed as fixed-point
265 * values with 16 fractional bits, although intermediates are kept with 28
266 * bits of precision to avoid loss of accuracy during shifts."
267 */
268long fp16_log(int x)
269{
270 int t;
271 int y = 0xa65af;
272
273 if (x < 0x00008000) x <<=16, y -= 0xb1721;
274 if (x < 0x00800000) x <<= 8, y -= 0x58b91;
275 if (x < 0x08000000) x <<= 4, y -= 0x2c5c8;
276 if (x < 0x20000000) x <<= 2, y -= 0x162e4;
277 if (x < 0x40000000) x <<= 1, y -= 0x0b172;
278 t = x + (x >> 1); if ((t & 0x80000000) == 0) x = t, y -= 0x067cd;
279 t = x + (x >> 2); if ((t & 0x80000000) == 0) x = t, y -= 0x03920;
280 t = x + (x >> 3); if ((t & 0x80000000) == 0) x = t, y -= 0x01e27;
281 t = x + (x >> 4); if ((t & 0x80000000) == 0) x = t, y -= 0x00f85;
282 t = x + (x >> 5); if ((t & 0x80000000) == 0) x = t, y -= 0x007e1;
283 t = x + (x >> 6); if ((t & 0x80000000) == 0) x = t, y -= 0x003f8;
284 t = x + (x >> 7); if ((t & 0x80000000) == 0) x = t, y -= 0x001fe;
285 x = 0x80000000 - x;
286 y -= x >> 15;
287
288 return y;
289}
290
291/**
292 * Fixed-point exponential
293 * taken from http://www.quinapalus.com/efunc.html
294 * "The code assumes integers are at least 32 bits long. The (non-negative)
295 * argument and the result of the function are both expressed as fixed-point
296 * values with 16 fractional bits. Notice that after 11 steps of the
297 * algorithm the constants involved become such that the code is simply
298 * doing a multiplication: this is explained in the note below.
299 * The extension to negative arguments is left as an exercise."
300 */
301long fp16_exp(int x)
302{
303 int t;
304 int y = 0x00010000;
305
306 if (x < 0) x += 0xb1721, y >>= 16;
307 t = x - 0x58b91; if (t >= 0) x = t, y <<= 8;
308 t = x - 0x2c5c8; if (t >= 0) x = t, y <<= 4;
309 t = x - 0x162e4; if (t >= 0) x = t, y <<= 2;
310 t = x - 0x0b172; if (t >= 0) x = t, y <<= 1;
311 t = x - 0x067cd; if (t >= 0) x = t, y += y >> 1;
312 t = x - 0x03920; if (t >= 0) x = t, y += y >> 2;
313 t = x - 0x01e27; if (t >= 0) x = t, y += y >> 3;
314 t = x - 0x00f85; if (t >= 0) x = t, y += y >> 4;
315 t = x - 0x007e1; if (t >= 0) x = t, y += y >> 5;
316 t = x - 0x003f8; if (t >= 0) x = t, y += y >> 6;
317 t = x - 0x001fe; if (t >= 0) x = t, y += y >> 7;
318 y += ((y >> 8) * x) >> 8;
319
320 return y;
321}
322
323/** MODIFIED FROM replaygain.c */
324
325#define FP_MUL_FRAC(x, y) fp_mul(x, y, fracbits)
326#define FP_DIV_FRAC(x, y) fp_div(x, y, fracbits)
327
328/* constants in fixed point format, 28 fractional bits */
329#define FP28_LN2 (186065279L) /* ln(2) */
330#define FP28_LN2_INV (387270501L) /* 1/ln(2) */
331#define FP28_EXP_ZERO (44739243L) /* 1/6 */
332#define FP28_EXP_ONE (-745654L) /* -1/360 */
333#define FP28_EXP_TWO (12428L) /* 1/21600 */
334#define FP28_LN10 (618095479L) /* ln(10) */
335#define FP28_LOG10OF2 (80807124L) /* log10(2) */
336
337#define TOL_BITS 2 /* log calculation tolerance */
338
339
340/* The fpexp10 fixed point math routine is based
341 * on oMathFP by Dan Carter (http://orbisstudios.com).
342 */
343
344/** FIXED POINT EXP10
345 * Return 10^x as FP integer. Argument is FP integer.
346 */
347long fp_exp10(long x, unsigned int fracbits)
348{
349 long k;
350 long z;
351 long R;
352 long xp;
353
354 /* scale constants */
355 const long fp_one = (1 << fracbits);
356 const long fp_half = (1 << (fracbits - 1));
357 const long fp_two = (2 << fracbits);
358 const long fp_mask = (fp_one - 1);
359 const long fp_ln2_inv = (FP28_LN2_INV >> (28 - fracbits));
360 const long fp_ln2 = (FP28_LN2 >> (28 - fracbits));
361 const long fp_ln10 = (FP28_LN10 >> (28 - fracbits));
362 const long fp_exp_zero = (FP28_EXP_ZERO >> (28 - fracbits));
363 const long fp_exp_one = (FP28_EXP_ONE >> (28 - fracbits));
364 const long fp_exp_two = (FP28_EXP_TWO >> (28 - fracbits));
365
366 /* exp(0) = 1 */
367 if (x == 0)
368 {
369 return fp_one;
370 }
371
372 /* convert from base 10 to base e */
373 x = FP_MUL_FRAC(x, fp_ln10);
374
375 /* calculate exp(x) */
376 k = (FP_MUL_FRAC(abs(x), fp_ln2_inv) + fp_half) & ~fp_mask;
377
378 if (x < 0)
379 {
380 k = -k;
381 }
382
383 x -= FP_MUL_FRAC(k, fp_ln2);
384 z = FP_MUL_FRAC(x, x);
385 R = fp_two + FP_MUL_FRAC(z, fp_exp_zero + FP_MUL_FRAC(z, fp_exp_one
386 + FP_MUL_FRAC(z, fp_exp_two)));
387 xp = fp_one + FP_DIV_FRAC(FP_MUL_FRAC(fp_two, x), R - x);
388
389 if (k < 0)
390 {
391 k = fp_one >> (-k >> fracbits);
392 }
393 else
394 {
395 k = fp_one << (k >> fracbits);
396 }
397
398 return FP_MUL_FRAC(k, xp);
399}
400
401/** FIXED POINT LOG10
402 * Return log10(x) as FP integer. Argument is FP integer.
403 */
404long fp_log10(long n, unsigned int fracbits)
405{
406 /* Calculate log2 of argument */
407
408 long log2, frac;
409 const long fp_one = (1 << fracbits);
410 const long fp_two = (2 << fracbits);
411 const long tolerance = (1 << ((fracbits / 2) + 2));
412
413 if (n <=0) return FP_NEGINF;
414 log2 = 0;
415
416 /* integer part */
417 while (n < fp_one)
418 {
419 log2 -= fp_one;
420 n <<= 1;
421 }
422 while (n >= fp_two)
423 {
424 log2 += fp_one;
425 n >>= 1;
426 }
427
428 /* fractional part */
429 frac = fp_one;
430 while (frac > tolerance)
431 {
432 frac >>= 1;
433 n = FP_MUL_FRAC(n, n);
434 if (n >= fp_two)
435 {
436 n >>= 1;
437 log2 += frac;
438 }
439 }
440
441 /* convert log2 to log10 */
442 return FP_MUL_FRAC(log2, (FP28_LOG10OF2 >> (28 - fracbits)));
443}
444
445/** CONVERT FACTOR TO DECIBELS */
446long fp_decibels(unsigned long factor, unsigned int fracbits)
447{
448 /* decibels = 20 * log10(factor) */
449 return FP_MUL_FRAC((20L << fracbits), fp_log10(factor, fracbits));
450}
451
452/** CONVERT DECIBELS TO FACTOR */
453long fp_factor(long decibels, unsigned int fracbits)
454{
455 /* factor = 10 ^ (decibels / 20) */
456 return fp_exp10(FP_DIV_FRAC(decibels, (20L << fracbits)), fracbits);
457}