diff options
Diffstat (limited to 'apps')
-rw-r--r-- | apps/SOURCES | 1 | ||||
-rw-r--r-- | apps/codecs/adx.c | 123 | ||||
-rw-r--r-- | apps/codecs/lib/SOURCES | 2 | ||||
-rw-r--r-- | apps/codecs/lib/fixedpoint.c | 1 | ||||
-rw-r--r-- | apps/codecs/lib/fixedpoint.h | 49 | ||||
-rw-r--r-- | apps/codecs/spc.c | 1 | ||||
-rw-r--r-- | apps/dsp.c | 4 | ||||
-rw-r--r-- | apps/dsp.h | 80 | ||||
-rw-r--r-- | apps/eq.c | 120 | ||||
-rw-r--r-- | apps/eq.h | 1 | ||||
-rw-r--r-- | apps/fixedpoint.c | 452 | ||||
-rw-r--r-- | apps/fixedpoint.h | 69 | ||||
-rw-r--r-- | apps/fracmul.h | 93 | ||||
-rw-r--r-- | apps/plugins/bounce.c | 4 | ||||
-rw-r--r-- | apps/plugins/bubbles.c | 20 | ||||
-rw-r--r-- | apps/plugins/clock/clock_draw_analog.c | 6 | ||||
-rw-r--r-- | apps/plugins/cube.c | 12 | ||||
-rw-r--r-- | apps/plugins/lib/fixedpoint.c | 239 | ||||
-rw-r--r-- | apps/plugins/lib/fixedpoint.h | 45 | ||||
-rw-r--r-- | apps/plugins/plasma.c | 2 | ||||
-rw-r--r-- | apps/plugins/vu_meter.c | 4 | ||||
-rw-r--r-- | apps/replaygain.c | 181 |
22 files changed, 754 insertions, 755 deletions
diff --git a/apps/SOURCES b/apps/SOURCES index 7475826015..f3acef1739 100644 --- a/apps/SOURCES +++ b/apps/SOURCES | |||
@@ -125,6 +125,7 @@ recorder/recording.c | |||
125 | #if INPUT_SRC_CAPS != 0 | 125 | #if INPUT_SRC_CAPS != 0 |
126 | audio_path.c | 126 | audio_path.c |
127 | #endif /* INPUT_SRC_CAPS != 0 */ | 127 | #endif /* INPUT_SRC_CAPS != 0 */ |
128 | fixedpoint.c | ||
128 | pcmbuf.c | 129 | pcmbuf.c |
129 | playback.c | 130 | playback.c |
130 | codecs.c | 131 | codecs.c |
diff --git a/apps/codecs/adx.c b/apps/codecs/adx.c index cc36f6a908..0e50054753 100644 --- a/apps/codecs/adx.c +++ b/apps/codecs/adx.c | |||
@@ -21,6 +21,7 @@ | |||
21 | #include "codeclib.h" | 21 | #include "codeclib.h" |
22 | #include "inttypes.h" | 22 | #include "inttypes.h" |
23 | #include "math.h" | 23 | #include "math.h" |
24 | #include "lib/fixedpoint.h" | ||
24 | 25 | ||
25 | CODEC_HEADER | 26 | CODEC_HEADER |
26 | 27 | ||
@@ -41,124 +42,6 @@ const long cutoff = 500; | |||
41 | 42 | ||
42 | static int16_t samples[WAV_CHUNK_SIZE] IBSS_ATTR; | 43 | static int16_t samples[WAV_CHUNK_SIZE] IBSS_ATTR; |
43 | 44 | ||
44 | /* fixed point stuff from apps/plugins/lib/fixedpoint.c */ | ||
45 | |||
46 | /* Inverse gain of circular cordic rotation in s0.31 format. */ | ||
47 | static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */ | ||
48 | |||
49 | /* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */ | ||
50 | static const unsigned long atan_table[] = { | ||
51 | 0x1fffffff, /* +0.785398163 (or pi/4) */ | ||
52 | 0x12e4051d, /* +0.463647609 */ | ||
53 | 0x09fb385b, /* +0.244978663 */ | ||
54 | 0x051111d4, /* +0.124354995 */ | ||
55 | 0x028b0d43, /* +0.062418810 */ | ||
56 | 0x0145d7e1, /* +0.031239833 */ | ||
57 | 0x00a2f61e, /* +0.015623729 */ | ||
58 | 0x00517c55, /* +0.007812341 */ | ||
59 | 0x0028be53, /* +0.003906230 */ | ||
60 | 0x00145f2e, /* +0.001953123 */ | ||
61 | 0x000a2f98, /* +0.000976562 */ | ||
62 | 0x000517cc, /* +0.000488281 */ | ||
63 | 0x00028be6, /* +0.000244141 */ | ||
64 | 0x000145f3, /* +0.000122070 */ | ||
65 | 0x0000a2f9, /* +0.000061035 */ | ||
66 | 0x0000517c, /* +0.000030518 */ | ||
67 | 0x000028be, /* +0.000015259 */ | ||
68 | 0x0000145f, /* +0.000007629 */ | ||
69 | 0x00000a2f, /* +0.000003815 */ | ||
70 | 0x00000517, /* +0.000001907 */ | ||
71 | 0x0000028b, /* +0.000000954 */ | ||
72 | 0x00000145, /* +0.000000477 */ | ||
73 | 0x000000a2, /* +0.000000238 */ | ||
74 | 0x00000051, /* +0.000000119 */ | ||
75 | 0x00000028, /* +0.000000060 */ | ||
76 | 0x00000014, /* +0.000000030 */ | ||
77 | 0x0000000a, /* +0.000000015 */ | ||
78 | 0x00000005, /* +0.000000007 */ | ||
79 | 0x00000002, /* +0.000000004 */ | ||
80 | 0x00000001, /* +0.000000002 */ | ||
81 | 0x00000000, /* +0.000000001 */ | ||
82 | 0x00000000, /* +0.000000000 */ | ||
83 | }; | ||
84 | |||
85 | /** | ||
86 | * Implements sin and cos using CORDIC rotation. | ||
87 | * | ||
88 | * @param phase has range from 0 to 0xffffffff, representing 0 and | ||
89 | * 2*pi respectively. | ||
90 | * @param cos return address for cos | ||
91 | * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX, | ||
92 | * representing -1 and 1 respectively. | ||
93 | */ | ||
94 | static long fsincos(unsigned long phase, long *cos) | ||
95 | { | ||
96 | int32_t x, x1, y, y1; | ||
97 | unsigned long z, z1; | ||
98 | int i; | ||
99 | |||
100 | /* Setup initial vector */ | ||
101 | x = cordic_circular_gain; | ||
102 | y = 0; | ||
103 | z = phase; | ||
104 | |||
105 | /* The phase has to be somewhere between 0..pi for this to work right */ | ||
106 | if (z < 0xffffffff / 4) { | ||
107 | /* z in first quadrant, z += pi/2 to correct */ | ||
108 | x = -x; | ||
109 | z += 0xffffffff / 4; | ||
110 | } else if (z < 3 * (0xffffffff / 4)) { | ||
111 | /* z in third quadrant, z -= pi/2 to correct */ | ||
112 | z -= 0xffffffff / 4; | ||
113 | } else { | ||
114 | /* z in fourth quadrant, z -= 3pi/2 to correct */ | ||
115 | x = -x; | ||
116 | z -= 3 * (0xffffffff / 4); | ||
117 | } | ||
118 | |||
119 | /* Each iteration adds roughly 1-bit of extra precision */ | ||
120 | for (i = 0; i < 31; i++) { | ||
121 | x1 = x >> i; | ||
122 | y1 = y >> i; | ||
123 | z1 = atan_table[i]; | ||
124 | |||
125 | /* Decided which direction to rotate vector. Pivot point is pi/2 */ | ||
126 | if (z >= 0xffffffff / 4) { | ||
127 | x -= y1; | ||
128 | y += x1; | ||
129 | z -= z1; | ||
130 | } else { | ||
131 | x += y1; | ||
132 | y -= x1; | ||
133 | z += z1; | ||
134 | } | ||
135 | } | ||
136 | |||
137 | if (cos) | ||
138 | *cos = x; | ||
139 | |||
140 | return y; | ||
141 | } | ||
142 | |||
143 | /** | ||
144 | * Fixed point square root via Newton-Raphson. | ||
145 | * @param a square root argument. | ||
146 | * @param fracbits specifies number of fractional bits in argument. | ||
147 | * @return Square root of argument in same fixed point format as input. | ||
148 | */ | ||
149 | static long fsqrt(long a, unsigned int fracbits) | ||
150 | { | ||
151 | long b = a/2 + (1 << fracbits); /* initial approximation */ | ||
152 | unsigned n; | ||
153 | const unsigned iterations = 8; /* bumped up from 4 as it wasn't | ||
154 | nearly enough for 28 fractional bits */ | ||
155 | |||
156 | for (n = 0; n < iterations; ++n) | ||
157 | b = (b + (long)(((long long)(a) << fracbits)/b))/2; | ||
158 | |||
159 | return b; | ||
160 | } | ||
161 | |||
162 | /* this is the codec entry point */ | 45 | /* this is the codec entry point */ |
163 | enum codec_status codec_main(void) | 46 | enum codec_status codec_main(void) |
164 | { | 47 | { |
@@ -238,7 +121,7 @@ next_track: | |||
238 | int64_t c; | 121 | int64_t c; |
239 | int64_t d; | 122 | int64_t d; |
240 | 123 | ||
241 | fsincos((unsigned long)phasemultiple,&z); | 124 | fp_sincos((unsigned long)phasemultiple,&z); |
242 | 125 | ||
243 | a = (M_SQRT2*big28)-(z*big28/LONG_MAX); | 126 | a = (M_SQRT2*big28)-(z*big28/LONG_MAX); |
244 | 127 | ||
@@ -247,7 +130,7 @@ next_track: | |||
247 | * which is sufficient here, but this is the only reason why I don't | 130 | * which is sufficient here, but this is the only reason why I don't |
248 | * use 32 fractional bits everywhere. | 131 | * use 32 fractional bits everywhere. |
249 | */ | 132 | */ |
250 | d = fsqrt((a+b)*(a-b)/big28,28); | 133 | d = fp_sqrt((a+b)*(a-b)/big28,28); |
251 | c = (a-d)*big28/b; | 134 | c = (a-d)*big28/b; |
252 | 135 | ||
253 | coef1 = (c*8192) >> 28; | 136 | coef1 = (c*8192) >> 28; |
diff --git a/apps/codecs/lib/SOURCES b/apps/codecs/lib/SOURCES index cbb8e60372..0141af21dc 100644 --- a/apps/codecs/lib/SOURCES +++ b/apps/codecs/lib/SOURCES | |||
@@ -1,6 +1,6 @@ | |||
1 | #if CONFIG_CODEC == SWCODEC /* software codec platforms */ | 1 | #if CONFIG_CODEC == SWCODEC /* software codec platforms */ |
2 | codeclib.c | 2 | codeclib.c |
3 | 3 | fixedpoint.c | |
4 | 4 | ||
5 | mdct2.c | 5 | mdct2.c |
6 | #ifdef CPU_ARM | 6 | #ifdef CPU_ARM |
diff --git a/apps/codecs/lib/fixedpoint.c b/apps/codecs/lib/fixedpoint.c new file mode 100644 index 0000000000..352e246673 --- /dev/null +++ b/apps/codecs/lib/fixedpoint.c | |||
@@ -0,0 +1 @@ | |||
#include "../../fixedpoint.c" | |||
diff --git a/apps/codecs/lib/fixedpoint.h b/apps/codecs/lib/fixedpoint.h new file mode 100644 index 0000000000..e6ed5208ca --- /dev/null +++ b/apps/codecs/lib/fixedpoint.h | |||
@@ -0,0 +1,49 @@ | |||
1 | /*************************************************************************** | ||
2 | * __________ __ ___. | ||
3 | * Open \______ \ ____ ____ | | _\_ |__ _______ ___ | ||
4 | * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / | ||
5 | * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < | ||
6 | * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ | ||
7 | * \/ \/ \/ \/ \/ | ||
8 | * $Id: fixedpoint.h -1 $ | ||
9 | * | ||
10 | * Copyright (C) 2006 Jens Arnold | ||
11 | * | ||
12 | * Fixed point library for plugins | ||
13 | * | ||
14 | * This program is free software; you can redistribute it and/or | ||
15 | * modify it under the terms of the GNU General Public License | ||
16 | * as published by the Free Software Foundation; either version 2 | ||
17 | * of the License, or (at your option) any later version. | ||
18 | * | ||
19 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY | ||
20 | * KIND, either express or implied. | ||
21 | * | ||
22 | ****************************************************************************/ | ||
23 | |||
24 | /** CODECS - FIXED POINT MATH ROUTINES - USAGE | ||
25 | * | ||
26 | * - x and y arguments are fixed point integers | ||
27 | * - fracbits is the number of fractional bits in the argument(s) | ||
28 | * - functions return long fixed point integers with the specified number | ||
29 | * of fractional bits unless otherwise specified | ||
30 | * | ||
31 | * Calculate sin and cos of an angle: | ||
32 | * fp_sincos(phase, *cos) | ||
33 | * where phase is a 32 bit unsigned integer with 0 representing 0 | ||
34 | * and 0xFFFFFFFF representing 2*pi, and *cos is the address to | ||
35 | * a long signed integer. Value returned is a long signed integer | ||
36 | * from LONG_MIN to LONG_MAX, representing -1 to 1 respectively. | ||
37 | * That is, value is a fixed point integer with 31 fractional bits. | ||
38 | * | ||
39 | * Take square root of a fixed point number: | ||
40 | * fp_sqrt(x, fracbits) | ||
41 | * | ||
42 | */ | ||
43 | #ifndef _FIXEDPOINT_H_CODECS | ||
44 | #define _FIXEDPOINT_H_CODECS | ||
45 | |||
46 | long fp_sincos(unsigned long phase, long *cos); | ||
47 | long fp_sqrt(long a, unsigned int fracbits); | ||
48 | |||
49 | #endif | ||
diff --git a/apps/codecs/spc.c b/apps/codecs/spc.c index 6ceb704c7c..3a06a228ef 100644 --- a/apps/codecs/spc.c +++ b/apps/codecs/spc.c | |||
@@ -26,6 +26,7 @@ | |||
26 | /* DSP Based on Brad Martin's OpenSPC DSP emulator */ | 26 | /* DSP Based on Brad Martin's OpenSPC DSP emulator */ |
27 | /* tag reading from sexyspc by John Brawn (John_Brawn@yahoo.com) and others */ | 27 | /* tag reading from sexyspc by John Brawn (John_Brawn@yahoo.com) and others */ |
28 | #include "codeclib.h" | 28 | #include "codeclib.h" |
29 | #include "../fracmul.h" | ||
29 | #include "libspc/spc_codec.h" | 30 | #include "libspc/spc_codec.h" |
30 | #include "libspc/spc_profiler.h" | 31 | #include "libspc/spc_profiler.h" |
31 | 32 | ||
diff --git a/apps/dsp.c b/apps/dsp.c index a760865afb..30b4ed357b 100644 --- a/apps/dsp.c +++ b/apps/dsp.c | |||
@@ -33,6 +33,8 @@ | |||
33 | #include "misc.h" | 33 | #include "misc.h" |
34 | #include "tdspeed.h" | 34 | #include "tdspeed.h" |
35 | #include "buffer.h" | 35 | #include "buffer.h" |
36 | #include "fixedpoint.h" | ||
37 | #include "fracmul.h" | ||
36 | 38 | ||
37 | /* 16-bit samples are scaled based on these constants. The shift should be | 39 | /* 16-bit samples are scaled based on these constants. The shift should be |
38 | * no more than 15. | 40 | * no more than 15. |
@@ -841,7 +843,7 @@ void dsp_set_crossfeed_cross_params(long lf_gain, long hf_gain, long cutoff) | |||
841 | * crossfeed shelf filter and should be removed if crossfeed settings are | 843 | * crossfeed shelf filter and should be removed if crossfeed settings are |
842 | * ever made incompatible for any other good reason. | 844 | * ever made incompatible for any other good reason. |
843 | */ | 845 | */ |
844 | cutoff = DIV64(cutoff, get_replaygain_int(hf_gain*5), 24); | 846 | cutoff = fp_div(cutoff, get_replaygain_int(hf_gain*5), 24); |
845 | filter_shelf_coefs(cutoff, hf_gain, false, c); | 847 | filter_shelf_coefs(cutoff, hf_gain, false, c); |
846 | /* Scale coefs by LF gain and shift them to s0.31 format. We have no gains | 848 | /* Scale coefs by LF gain and shift them to s0.31 format. We have no gains |
847 | * over 1 and can do this safely | 849 | * over 1 and can do this safely |
diff --git a/apps/dsp.h b/apps/dsp.h index 8c23c3053d..3d24b24245 100644 --- a/apps/dsp.h +++ b/apps/dsp.h | |||
@@ -64,86 +64,6 @@ enum { | |||
64 | DSP_CALLBACK_SET_STEREO_WIDTH | 64 | DSP_CALLBACK_SET_STEREO_WIDTH |
65 | }; | 65 | }; |
66 | 66 | ||
67 | /* A bunch of fixed point assembler helper macros */ | ||
68 | #if defined(CPU_COLDFIRE) | ||
69 | /* These macros use the Coldfire EMAC extension and need the MACSR flags set | ||
70 | * to fractional mode with no rounding. | ||
71 | */ | ||
72 | |||
73 | /* Multiply two S.31 fractional integers and return the sign bit and the | ||
74 | * 31 most significant bits of the result. | ||
75 | */ | ||
76 | #define FRACMUL(x, y) \ | ||
77 | ({ \ | ||
78 | long t; \ | ||
79 | asm ("mac.l %[a], %[b], %%acc0\n\t" \ | ||
80 | "movclr.l %%acc0, %[t]\n\t" \ | ||
81 | : [t] "=r" (t) : [a] "r" (x), [b] "r" (y)); \ | ||
82 | t; \ | ||
83 | }) | ||
84 | |||
85 | /* Multiply two S.31 fractional integers, and return the 32 most significant | ||
86 | * bits after a shift left by the constant z. NOTE: Only works for shifts of | ||
87 | * 1 to 8 on Coldfire! | ||
88 | */ | ||
89 | #define FRACMUL_SHL(x, y, z) \ | ||
90 | ({ \ | ||
91 | long t, t2; \ | ||
92 | asm ("mac.l %[a], %[b], %%acc0\n\t" \ | ||
93 | "moveq.l %[d], %[t]\n\t" \ | ||
94 | "move.l %%accext01, %[t2]\n\t" \ | ||
95 | "and.l %[mask], %[t2]\n\t" \ | ||
96 | "lsr.l %[t], %[t2]\n\t" \ | ||
97 | "movclr.l %%acc0, %[t]\n\t" \ | ||
98 | "asl.l %[c], %[t]\n\t" \ | ||
99 | "or.l %[t2], %[t]\n\t" \ | ||
100 | : [t] "=&d" (t), [t2] "=&d" (t2) \ | ||
101 | : [a] "r" (x), [b] "r" (y), [mask] "d" (0xff), \ | ||
102 | [c] "i" ((z)), [d] "i" (8 - (z))); \ | ||
103 | t; \ | ||
104 | }) | ||
105 | |||
106 | #elif defined(CPU_ARM) | ||
107 | |||
108 | /* Multiply two S.31 fractional integers and return the sign bit and the | ||
109 | * 31 most significant bits of the result. | ||
110 | */ | ||
111 | #define FRACMUL(x, y) \ | ||
112 | ({ \ | ||
113 | long t, t2; \ | ||
114 | asm ("smull %[t], %[t2], %[a], %[b]\n\t" \ | ||
115 | "mov %[t2], %[t2], asl #1\n\t" \ | ||
116 | "orr %[t], %[t2], %[t], lsr #31\n\t" \ | ||
117 | : [t] "=&r" (t), [t2] "=&r" (t2) \ | ||
118 | : [a] "r" (x), [b] "r" (y)); \ | ||
119 | t; \ | ||
120 | }) | ||
121 | |||
122 | /* Multiply two S.31 fractional integers, and return the 32 most significant | ||
123 | * bits after a shift left by the constant z. | ||
124 | */ | ||
125 | #define FRACMUL_SHL(x, y, z) \ | ||
126 | ({ \ | ||
127 | long t, t2; \ | ||
128 | asm ("smull %[t], %[t2], %[a], %[b]\n\t" \ | ||
129 | "mov %[t2], %[t2], asl %[c]\n\t" \ | ||
130 | "orr %[t], %[t2], %[t], lsr %[d]\n\t" \ | ||
131 | : [t] "=&r" (t), [t2] "=&r" (t2) \ | ||
132 | : [a] "r" (x), [b] "r" (y), \ | ||
133 | [c] "M" ((z) + 1), [d] "M" (31 - (z))); \ | ||
134 | t; \ | ||
135 | }) | ||
136 | |||
137 | #else | ||
138 | |||
139 | #define FRACMUL(x, y) (long) (((((long long) (x)) * ((long long) (y))) >> 31)) | ||
140 | #define FRACMUL_SHL(x, y, z) \ | ||
141 | ((long)(((((long long) (x)) * ((long long) (y))) >> (31 - (z))))) | ||
142 | |||
143 | #endif | ||
144 | |||
145 | #define DIV64(x, y, z) (long)(((long long)(x) << (z))/(y)) | ||
146 | |||
147 | struct dsp_config; | 67 | struct dsp_config; |
148 | 68 | ||
149 | int dsp_process(struct dsp_config *dsp, char *dest, | 69 | int dsp_process(struct dsp_config *dsp, char *dest, |
@@ -21,105 +21,11 @@ | |||
21 | 21 | ||
22 | #include <inttypes.h> | 22 | #include <inttypes.h> |
23 | #include "config.h" | 23 | #include "config.h" |
24 | #include "dsp.h" | 24 | #include "fixedpoint.h" |
25 | #include "fracmul.h" | ||
25 | #include "eq.h" | 26 | #include "eq.h" |
26 | #include "replaygain.h" | 27 | #include "replaygain.h" |
27 | 28 | ||
28 | /* Inverse gain of circular cordic rotation in s0.31 format. */ | ||
29 | static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */ | ||
30 | |||
31 | /* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */ | ||
32 | static const unsigned long atan_table[] = { | ||
33 | 0x1fffffff, /* +0.785398163 (or pi/4) */ | ||
34 | 0x12e4051d, /* +0.463647609 */ | ||
35 | 0x09fb385b, /* +0.244978663 */ | ||
36 | 0x051111d4, /* +0.124354995 */ | ||
37 | 0x028b0d43, /* +0.062418810 */ | ||
38 | 0x0145d7e1, /* +0.031239833 */ | ||
39 | 0x00a2f61e, /* +0.015623729 */ | ||
40 | 0x00517c55, /* +0.007812341 */ | ||
41 | 0x0028be53, /* +0.003906230 */ | ||
42 | 0x00145f2e, /* +0.001953123 */ | ||
43 | 0x000a2f98, /* +0.000976562 */ | ||
44 | 0x000517cc, /* +0.000488281 */ | ||
45 | 0x00028be6, /* +0.000244141 */ | ||
46 | 0x000145f3, /* +0.000122070 */ | ||
47 | 0x0000a2f9, /* +0.000061035 */ | ||
48 | 0x0000517c, /* +0.000030518 */ | ||
49 | 0x000028be, /* +0.000015259 */ | ||
50 | 0x0000145f, /* +0.000007629 */ | ||
51 | 0x00000a2f, /* +0.000003815 */ | ||
52 | 0x00000517, /* +0.000001907 */ | ||
53 | 0x0000028b, /* +0.000000954 */ | ||
54 | 0x00000145, /* +0.000000477 */ | ||
55 | 0x000000a2, /* +0.000000238 */ | ||
56 | 0x00000051, /* +0.000000119 */ | ||
57 | 0x00000028, /* +0.000000060 */ | ||
58 | 0x00000014, /* +0.000000030 */ | ||
59 | 0x0000000a, /* +0.000000015 */ | ||
60 | 0x00000005, /* +0.000000007 */ | ||
61 | 0x00000002, /* +0.000000004 */ | ||
62 | 0x00000001, /* +0.000000002 */ | ||
63 | 0x00000000, /* +0.000000001 */ | ||
64 | 0x00000000, /* +0.000000000 */ | ||
65 | }; | ||
66 | |||
67 | /** | ||
68 | * Implements sin and cos using CORDIC rotation. | ||
69 | * | ||
70 | * @param phase has range from 0 to 0xffffffff, representing 0 and | ||
71 | * 2*pi respectively. | ||
72 | * @param cos return address for cos | ||
73 | * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX, | ||
74 | * representing -1 and 1 respectively. | ||
75 | */ | ||
76 | static long fsincos(unsigned long phase, long *cos) { | ||
77 | int32_t x, x1, y, y1; | ||
78 | unsigned long z, z1; | ||
79 | int i; | ||
80 | |||
81 | /* Setup initial vector */ | ||
82 | x = cordic_circular_gain; | ||
83 | y = 0; | ||
84 | z = phase; | ||
85 | |||
86 | /* The phase has to be somewhere between 0..pi for this to work right */ | ||
87 | if (z < 0xffffffff / 4) { | ||
88 | /* z in first quadrant, z += pi/2 to correct */ | ||
89 | x = -x; | ||
90 | z += 0xffffffff / 4; | ||
91 | } else if (z < 3 * (0xffffffff / 4)) { | ||
92 | /* z in third quadrant, z -= pi/2 to correct */ | ||
93 | z -= 0xffffffff / 4; | ||
94 | } else { | ||
95 | /* z in fourth quadrant, z -= 3pi/2 to correct */ | ||
96 | x = -x; | ||
97 | z -= 3 * (0xffffffff / 4); | ||
98 | } | ||
99 | |||
100 | /* Each iteration adds roughly 1-bit of extra precision */ | ||
101 | for (i = 0; i < 31; i++) { | ||
102 | x1 = x >> i; | ||
103 | y1 = y >> i; | ||
104 | z1 = atan_table[i]; | ||
105 | |||
106 | /* Decided which direction to rotate vector. Pivot point is pi/2 */ | ||
107 | if (z >= 0xffffffff / 4) { | ||
108 | x -= y1; | ||
109 | y += x1; | ||
110 | z -= z1; | ||
111 | } else { | ||
112 | x += y1; | ||
113 | y -= x1; | ||
114 | z += z1; | ||
115 | } | ||
116 | } | ||
117 | |||
118 | *cos = x; | ||
119 | |||
120 | return y; | ||
121 | } | ||
122 | |||
123 | /** | 29 | /** |
124 | * Calculate first order shelving filter. Filter is not directly usable by the | 30 | * Calculate first order shelving filter. Filter is not directly usable by the |
125 | * eq_filter() function. | 31 | * eq_filter() function. |
@@ -135,16 +41,16 @@ void filter_shelf_coefs(unsigned long cutoff, long A, bool low, int32_t *c) | |||
135 | int32_t b0, b1, a0, a1; /* s3.28 */ | 41 | int32_t b0, b1, a0, a1; /* s3.28 */ |
136 | const long g = get_replaygain_int(A*5) << 4; /* 10^(db/40), s3.28 */ | 42 | const long g = get_replaygain_int(A*5) << 4; /* 10^(db/40), s3.28 */ |
137 | 43 | ||
138 | sin = fsincos(cutoff/2, &cos); | 44 | sin = fp_sincos(cutoff/2, &cos); |
139 | if (low) { | 45 | if (low) { |
140 | const int32_t sin_div_g = DIV64(sin, g, 25); | 46 | const int32_t sin_div_g = fp_div(sin, g, 25); |
141 | cos >>= 3; | 47 | cos >>= 3; |
142 | b0 = FRACMUL(sin, g) + cos; /* 0.25 .. 4.10 */ | 48 | b0 = FRACMUL(sin, g) + cos; /* 0.25 .. 4.10 */ |
143 | b1 = FRACMUL(sin, g) - cos; /* -1 .. 3.98 */ | 49 | b1 = FRACMUL(sin, g) - cos; /* -1 .. 3.98 */ |
144 | a0 = sin_div_g + cos; /* 0.25 .. 4.10 */ | 50 | a0 = sin_div_g + cos; /* 0.25 .. 4.10 */ |
145 | a1 = sin_div_g - cos; /* -1 .. 3.98 */ | 51 | a1 = sin_div_g - cos; /* -1 .. 3.98 */ |
146 | } else { | 52 | } else { |
147 | const int32_t cos_div_g = DIV64(cos, g, 25); | 53 | const int32_t cos_div_g = fp_div(cos, g, 25); |
148 | sin >>= 3; | 54 | sin >>= 3; |
149 | b0 = sin + FRACMUL(cos, g); /* 0.25 .. 4.10 */ | 55 | b0 = sin + FRACMUL(cos, g); /* 0.25 .. 4.10 */ |
150 | b1 = sin - FRACMUL(cos, g); /* -3.98 .. 1 */ | 56 | b1 = sin - FRACMUL(cos, g); /* -3.98 .. 1 */ |
@@ -152,7 +58,7 @@ void filter_shelf_coefs(unsigned long cutoff, long A, bool low, int32_t *c) | |||
152 | a1 = sin - cos_div_g; /* -3.98 .. 1 */ | 58 | a1 = sin - cos_div_g; /* -3.98 .. 1 */ |
153 | } | 59 | } |
154 | 60 | ||
155 | const int32_t rcp_a0 = DIV64(1, a0, 57); /* 0.24 .. 3.98, s2.29 */ | 61 | const int32_t rcp_a0 = fp_div(1, a0, 57); /* 0.24 .. 3.98, s2.29 */ |
156 | *c++ = FRACMUL_SHL(b0, rcp_a0, 1); /* 0.063 .. 15.85 */ | 62 | *c++ = FRACMUL_SHL(b0, rcp_a0, 1); /* 0.063 .. 15.85 */ |
157 | *c++ = FRACMUL_SHL(b1, rcp_a0, 1); /* -15.85 .. 15.85 */ | 63 | *c++ = FRACMUL_SHL(b1, rcp_a0, 1); /* -15.85 .. 15.85 */ |
158 | *c++ = -FRACMUL_SHL(a1, rcp_a0, 1); /* -1 .. 1 */ | 64 | *c++ = -FRACMUL_SHL(a1, rcp_a0, 1); /* -1 .. 1 */ |
@@ -220,10 +126,10 @@ void eq_pk_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) | |||
220 | long cs; | 126 | long cs; |
221 | const long one = 1 << 28; /* s3.28 */ | 127 | const long one = 1 << 28; /* s3.28 */ |
222 | const long A = get_replaygain_int(db*5) << 5; /* 10^(db/40), s2.29 */ | 128 | const long A = get_replaygain_int(db*5) << 5; /* 10^(db/40), s2.29 */ |
223 | const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ | 129 | const long alpha = fp_sincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ |
224 | int32_t a0, a1, a2; /* these are all s3.28 format */ | 130 | int32_t a0, a1, a2; /* these are all s3.28 format */ |
225 | int32_t b0, b1, b2; | 131 | int32_t b0, b1, b2; |
226 | const long alphadivA = DIV64(alpha, A, 27); | 132 | const long alphadivA = fp_div(alpha, A, 27); |
227 | 133 | ||
228 | /* possible numerical ranges are in comments by each coef */ | 134 | /* possible numerical ranges are in comments by each coef */ |
229 | b0 = one + FRACMUL(alpha, A); /* [1 .. 5] */ | 135 | b0 = one + FRACMUL(alpha, A); /* [1 .. 5] */ |
@@ -233,7 +139,7 @@ void eq_pk_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) | |||
233 | a2 = one - alphadivA; /* [-3 .. 1] */ | 139 | a2 = one - alphadivA; /* [-3 .. 1] */ |
234 | 140 | ||
235 | /* range of this is roughly [0.2 .. 1], but we'll never hit 1 completely */ | 141 | /* range of this is roughly [0.2 .. 1], but we'll never hit 1 completely */ |
236 | const long rcp_a0 = DIV64(1, a0, 59); /* s0.31 */ | 142 | const long rcp_a0 = fp_div(1, a0, 59); /* s0.31 */ |
237 | *c++ = FRACMUL(b0, rcp_a0); /* [0.25 .. 4] */ | 143 | *c++ = FRACMUL(b0, rcp_a0); /* [0.25 .. 4] */ |
238 | *c++ = FRACMUL(b1, rcp_a0); /* [-2 .. 2] */ | 144 | *c++ = FRACMUL(b1, rcp_a0); /* [-2 .. 2] */ |
239 | *c++ = FRACMUL(b2, rcp_a0); /* [-2.4 .. 1] */ | 145 | *c++ = FRACMUL(b2, rcp_a0); /* [-2.4 .. 1] */ |
@@ -251,7 +157,7 @@ void eq_ls_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) | |||
251 | const long one = 1 << 25; /* s6.25 */ | 157 | const long one = 1 << 25; /* s6.25 */ |
252 | const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */ | 158 | const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */ |
253 | const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */ | 159 | const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */ |
254 | const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ | 160 | const long alpha = fp_sincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ |
255 | const long ap1 = (A >> 4) + one; | 161 | const long ap1 = (A >> 4) + one; |
256 | const long am1 = (A >> 4) - one; | 162 | const long am1 = (A >> 4) - one; |
257 | const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha); | 163 | const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha); |
@@ -272,7 +178,7 @@ void eq_ls_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) | |||
272 | a2 = ap1 + FRACMUL(am1, cs) - twosqrtalpha; | 178 | a2 = ap1 + FRACMUL(am1, cs) - twosqrtalpha; |
273 | 179 | ||
274 | /* [0.1 .. 1.99] */ | 180 | /* [0.1 .. 1.99] */ |
275 | const long rcp_a0 = DIV64(1, a0, 55); /* s1.30 */ | 181 | const long rcp_a0 = fp_div(1, a0, 55); /* s1.30 */ |
276 | *c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0.06 .. 15.9] */ | 182 | *c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0.06 .. 15.9] */ |
277 | *c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-2 .. 31.7] */ | 183 | *c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-2 .. 31.7] */ |
278 | *c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 15.9] */ | 184 | *c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 15.9] */ |
@@ -290,7 +196,7 @@ void eq_hs_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) | |||
290 | const long one = 1 << 25; /* s6.25 */ | 196 | const long one = 1 << 25; /* s6.25 */ |
291 | const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */ | 197 | const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */ |
292 | const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */ | 198 | const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */ |
293 | const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ | 199 | const long alpha = fp_sincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ |
294 | const long ap1 = (A >> 4) + one; | 200 | const long ap1 = (A >> 4) + one; |
295 | const long am1 = (A >> 4) - one; | 201 | const long am1 = (A >> 4) - one; |
296 | const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha); | 202 | const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha); |
@@ -311,7 +217,7 @@ void eq_hs_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) | |||
311 | a2 = ap1 - FRACMUL(am1, cs) - twosqrtalpha; | 217 | a2 = ap1 - FRACMUL(am1, cs) - twosqrtalpha; |
312 | 218 | ||
313 | /* [0.1 .. 1.99] */ | 219 | /* [0.1 .. 1.99] */ |
314 | const long rcp_a0 = DIV64(1, a0, 55); /* s1.30 */ | 220 | const long rcp_a0 = fp_div(1, a0, 55); /* s1.30 */ |
315 | *c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0 .. 16] */ | 221 | *c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0 .. 16] */ |
316 | *c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-31.7 .. 2] */ | 222 | *c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-31.7 .. 2] */ |
317 | *c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 16] */ | 223 | *c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 16] */ |
@@ -23,6 +23,7 @@ | |||
23 | #define _EQ_H | 23 | #define _EQ_H |
24 | 24 | ||
25 | #include <inttypes.h> | 25 | #include <inttypes.h> |
26 | #include <stdbool.h> | ||
26 | 27 | ||
27 | /* These depend on the fixed point formats used by the different filter types | 28 | /* These depend on the fixed point formats used by the different filter types |
28 | and need to be changed when they change. | 29 | and need to be changed when they change. |
diff --git a/apps/fixedpoint.c b/apps/fixedpoint.c new file mode 100644 index 0000000000..917f624258 --- /dev/null +++ b/apps/fixedpoint.c | |||
@@ -0,0 +1,452 @@ | |||
1 | /*************************************************************************** | ||
2 | * __________ __ ___. | ||
3 | * Open \______ \ ____ ____ | | _\_ |__ _______ ___ | ||
4 | * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / | ||
5 | * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < | ||
6 | * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ | ||
7 | * \/ \/ \/ \/ \/ | ||
8 | * $Id: fixedpoint.c -1 $ | ||
9 | * | ||
10 | * Copyright (C) 2006 Jens Arnold | ||
11 | * | ||
12 | * Fixed point library for plugins | ||
13 | * | ||
14 | * This program is free software; you can redistribute it and/or | ||
15 | * modify it under the terms of the GNU General Public License | ||
16 | * as published by the Free Software Foundation; either version 2 | ||
17 | * of the License, or (at your option) any later version. | ||
18 | * | ||
19 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY | ||
20 | * KIND, either express or implied. | ||
21 | * | ||
22 | ****************************************************************************/ | ||
23 | |||
24 | #include "fixedpoint.h" | ||
25 | #include <stdlib.h> | ||
26 | #include <stdbool.h> | ||
27 | #include <inttypes.h> | ||
28 | |||
29 | #ifndef BIT_N | ||
30 | #define BIT_N(n) (1U << (n)) | ||
31 | #endif | ||
32 | |||
33 | /** TAKEN FROM ORIGINAL fixedpoint.h */ | ||
34 | /* Inverse gain of circular cordic rotation in s0.31 format. */ | ||
35 | static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */ | ||
36 | |||
37 | /* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */ | ||
38 | static const unsigned long atan_table[] = { | ||
39 | 0x1fffffff, /* +0.785398163 (or pi/4) */ | ||
40 | 0x12e4051d, /* +0.463647609 */ | ||
41 | 0x09fb385b, /* +0.244978663 */ | ||
42 | 0x051111d4, /* +0.124354995 */ | ||
43 | 0x028b0d43, /* +0.062418810 */ | ||
44 | 0x0145d7e1, /* +0.031239833 */ | ||
45 | 0x00a2f61e, /* +0.015623729 */ | ||
46 | 0x00517c55, /* +0.007812341 */ | ||
47 | 0x0028be53, /* +0.003906230 */ | ||
48 | 0x00145f2e, /* +0.001953123 */ | ||
49 | 0x000a2f98, /* +0.000976562 */ | ||
50 | 0x000517cc, /* +0.000488281 */ | ||
51 | 0x00028be6, /* +0.000244141 */ | ||
52 | 0x000145f3, /* +0.000122070 */ | ||
53 | 0x0000a2f9, /* +0.000061035 */ | ||
54 | 0x0000517c, /* +0.000030518 */ | ||
55 | 0x000028be, /* +0.000015259 */ | ||
56 | 0x0000145f, /* +0.000007629 */ | ||
57 | 0x00000a2f, /* +0.000003815 */ | ||
58 | 0x00000517, /* +0.000001907 */ | ||
59 | 0x0000028b, /* +0.000000954 */ | ||
60 | 0x00000145, /* +0.000000477 */ | ||
61 | 0x000000a2, /* +0.000000238 */ | ||
62 | 0x00000051, /* +0.000000119 */ | ||
63 | 0x00000028, /* +0.000000060 */ | ||
64 | 0x00000014, /* +0.000000030 */ | ||
65 | 0x0000000a, /* +0.000000015 */ | ||
66 | 0x00000005, /* +0.000000007 */ | ||
67 | 0x00000002, /* +0.000000004 */ | ||
68 | 0x00000001, /* +0.000000002 */ | ||
69 | 0x00000000, /* +0.000000001 */ | ||
70 | 0x00000000, /* +0.000000000 */ | ||
71 | }; | ||
72 | |||
73 | /* Precalculated sine and cosine * 16384 (2^14) (fixed point 18.14) */ | ||
74 | static const short sin_table[91] = | ||
75 | { | ||
76 | 0, 285, 571, 857, 1142, 1427, 1712, 1996, 2280, 2563, | ||
77 | 2845, 3126, 3406, 3685, 3963, 4240, 4516, 4790, 5062, 5334, | ||
78 | 5603, 5871, 6137, 6401, 6663, 6924, 7182, 7438, 7691, 7943, | ||
79 | 8191, 8438, 8682, 8923, 9161, 9397, 9630, 9860, 10086, 10310, | ||
80 | 10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365, | ||
81 | 12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043, | ||
82 | 14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295, | ||
83 | 15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082, | ||
84 | 16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381, | ||
85 | 16384 | ||
86 | }; | ||
87 | |||
88 | /** | ||
89 | * Implements sin and cos using CORDIC rotation. | ||
90 | * | ||
91 | * @param phase has range from 0 to 0xffffffff, representing 0 and | ||
92 | * 2*pi respectively. | ||
93 | * @param cos return address for cos | ||
94 | * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX, | ||
95 | * representing -1 and 1 respectively. | ||
96 | */ | ||
97 | long fp_sincos(unsigned long phase, long *cos) | ||
98 | { | ||
99 | int32_t x, x1, y, y1; | ||
100 | unsigned long z, z1; | ||
101 | int i; | ||
102 | |||
103 | /* Setup initial vector */ | ||
104 | x = cordic_circular_gain; | ||
105 | y = 0; | ||
106 | z = phase; | ||
107 | |||
108 | /* The phase has to be somewhere between 0..pi for this to work right */ | ||
109 | if (z < 0xffffffff / 4) { | ||
110 | /* z in first quadrant, z += pi/2 to correct */ | ||
111 | x = -x; | ||
112 | z += 0xffffffff / 4; | ||
113 | } else if (z < 3 * (0xffffffff / 4)) { | ||
114 | /* z in third quadrant, z -= pi/2 to correct */ | ||
115 | z -= 0xffffffff / 4; | ||
116 | } else { | ||
117 | /* z in fourth quadrant, z -= 3pi/2 to correct */ | ||
118 | x = -x; | ||
119 | z -= 3 * (0xffffffff / 4); | ||
120 | } | ||
121 | |||
122 | /* Each iteration adds roughly 1-bit of extra precision */ | ||
123 | for (i = 0; i < 31; i++) { | ||
124 | x1 = x >> i; | ||
125 | y1 = y >> i; | ||
126 | z1 = atan_table[i]; | ||
127 | |||
128 | /* Decided which direction to rotate vector. Pivot point is pi/2 */ | ||
129 | if (z >= 0xffffffff / 4) { | ||
130 | x -= y1; | ||
131 | y += x1; | ||
132 | z -= z1; | ||
133 | } else { | ||
134 | x += y1; | ||
135 | y -= x1; | ||
136 | z += z1; | ||
137 | } | ||
138 | } | ||
139 | |||
140 | if (cos) | ||
141 | *cos = x; | ||
142 | |||
143 | return y; | ||
144 | } | ||
145 | |||
146 | |||
147 | #if defined(PLUGIN) || defined(CODEC) | ||
148 | /** | ||
149 | * Fixed point square root via Newton-Raphson. | ||
150 | * @param x square root argument. | ||
151 | * @param fracbits specifies number of fractional bits in argument. | ||
152 | * @return Square root of argument in same fixed point format as input. | ||
153 | * | ||
154 | * This routine has been modified to run longer for greater precision, | ||
155 | * but cuts calculation short if the answer is reached sooner. In | ||
156 | * general, the closer x is to 1, the quicker the calculation. | ||
157 | */ | ||
158 | long fp_sqrt(long x, unsigned int fracbits) | ||
159 | { | ||
160 | long b = x/2 + BIT_N(fracbits); /* initial approximation */ | ||
161 | long c; | ||
162 | unsigned n; | ||
163 | const unsigned iterations = 8; | ||
164 | |||
165 | for (n = 0; n < iterations; ++n) | ||
166 | { | ||
167 | c = fp_div(x, b, fracbits); | ||
168 | if (c == b) break; | ||
169 | b = (b + c)/2; | ||
170 | } | ||
171 | |||
172 | return b; | ||
173 | } | ||
174 | #endif /* PLUGIN or CODEC */ | ||
175 | |||
176 | |||
177 | #if defined(PLUGIN) | ||
178 | /** | ||
179 | * Fixed point sinus using a lookup table | ||
180 | * don't forget to divide the result by 16384 to get the actual sinus value | ||
181 | * @param val sinus argument in degree | ||
182 | * @return sin(val)*16384 | ||
183 | */ | ||
184 | long fp14_sin(int val) | ||
185 | { | ||
186 | val = (val+360)%360; | ||
187 | if (val < 181) | ||
188 | { | ||
189 | if (val < 91)/* phase 0-90 degree */ | ||
190 | return (long)sin_table[val]; | ||
191 | else/* phase 91-180 degree */ | ||
192 | return (long)sin_table[180-val]; | ||
193 | } | ||
194 | else | ||
195 | { | ||
196 | if (val < 271)/* phase 181-270 degree */ | ||
197 | return -(long)sin_table[val-180]; | ||
198 | else/* phase 270-359 degree */ | ||
199 | return -(long)sin_table[360-val]; | ||
200 | } | ||
201 | return 0; | ||
202 | } | ||
203 | |||
204 | /** | ||
205 | * Fixed point cosinus using a lookup table | ||
206 | * don't forget to divide the result by 16384 to get the actual cosinus value | ||
207 | * @param val sinus argument in degree | ||
208 | * @return cos(val)*16384 | ||
209 | */ | ||
210 | long fp14_cos(int val) | ||
211 | { | ||
212 | val = (val+360)%360; | ||
213 | if (val < 181) | ||
214 | { | ||
215 | if (val < 91)/* phase 0-90 degree */ | ||
216 | return (long)sin_table[90-val]; | ||
217 | else/* phase 91-180 degree */ | ||
218 | return -(long)sin_table[val-90]; | ||
219 | } | ||
220 | else | ||
221 | { | ||
222 | if (val < 271)/* phase 181-270 degree */ | ||
223 | return -(long)sin_table[270-val]; | ||
224 | else/* phase 270-359 degree */ | ||
225 | return (long)sin_table[val-270]; | ||
226 | } | ||
227 | return 0; | ||
228 | } | ||
229 | |||
230 | /** | ||
231 | * Fixed-point natural log | ||
232 | * taken from http://www.quinapalus.com/efunc.html | ||
233 | * "The code assumes integers are at least 32 bits long. The (positive) | ||
234 | * argument and the result of the function are both expressed as fixed-point | ||
235 | * values with 16 fractional bits, although intermediates are kept with 28 | ||
236 | * bits of precision to avoid loss of accuracy during shifts." | ||
237 | */ | ||
238 | |||
239 | long fp16_log(int x) { | ||
240 | long t,y; | ||
241 | |||
242 | y=0xa65af; | ||
243 | if(x<0x00008000) x<<=16, y-=0xb1721; | ||
244 | if(x<0x00800000) x<<= 8, y-=0x58b91; | ||
245 | if(x<0x08000000) x<<= 4, y-=0x2c5c8; | ||
246 | if(x<0x20000000) x<<= 2, y-=0x162e4; | ||
247 | if(x<0x40000000) x<<= 1, y-=0x0b172; | ||
248 | t=x+(x>>1); if((t&0x80000000)==0) x=t,y-=0x067cd; | ||
249 | t=x+(x>>2); if((t&0x80000000)==0) x=t,y-=0x03920; | ||
250 | t=x+(x>>3); if((t&0x80000000)==0) x=t,y-=0x01e27; | ||
251 | t=x+(x>>4); if((t&0x80000000)==0) x=t,y-=0x00f85; | ||
252 | t=x+(x>>5); if((t&0x80000000)==0) x=t,y-=0x007e1; | ||
253 | t=x+(x>>6); if((t&0x80000000)==0) x=t,y-=0x003f8; | ||
254 | t=x+(x>>7); if((t&0x80000000)==0) x=t,y-=0x001fe; | ||
255 | x=0x80000000-x; | ||
256 | y-=x>>15; | ||
257 | return y; | ||
258 | } | ||
259 | #endif /* PLUGIN */ | ||
260 | |||
261 | |||
262 | #if (!defined(PLUGIN) && !defined(CODEC)) | ||
263 | /** MODIFIED FROM replaygain.c */ | ||
264 | /* These math routines have 64-bit internal precision to avoid overflows. | ||
265 | * Arguments and return values are 32-bit (long) precision. | ||
266 | */ | ||
267 | |||
268 | #define FP_MUL64(x, y) (((x) * (y)) >> (fracbits)) | ||
269 | #define FP_DIV64(x, y) (((x) << (fracbits)) / (y)) | ||
270 | |||
271 | static long long fp_exp10(long long x, unsigned int fracbits); | ||
272 | /* static long long fp_log10(long long n, unsigned int fracbits); */ | ||
273 | |||
274 | /* constants in fixed point format, 28 fractional bits */ | ||
275 | #define FP28_LN2 (186065279LL) /* ln(2) */ | ||
276 | #define FP28_LN2_INV (387270501LL) /* 1/ln(2) */ | ||
277 | #define FP28_EXP_ZERO (44739243LL) /* 1/6 */ | ||
278 | #define FP28_EXP_ONE (-745654LL) /* -1/360 */ | ||
279 | #define FP28_EXP_TWO (12428LL) /* 1/21600 */ | ||
280 | #define FP28_LN10 (618095479LL) /* ln(10) */ | ||
281 | #define FP28_LOG10OF2 (80807124LL) /* log10(2) */ | ||
282 | |||
283 | #define TOL_BITS 2 /* log calculation tolerance */ | ||
284 | |||
285 | |||
286 | /* The fpexp10 fixed point math routine is based | ||
287 | * on oMathFP by Dan Carter (http://orbisstudios.com). | ||
288 | */ | ||
289 | |||
290 | /** FIXED POINT EXP10 | ||
291 | * Return 10^x as FP integer. Argument is FP integer. | ||
292 | */ | ||
293 | static long long fp_exp10(long long x, unsigned int fracbits) | ||
294 | { | ||
295 | long long k; | ||
296 | long long z; | ||
297 | long long R; | ||
298 | long long xp; | ||
299 | |||
300 | /* scale constants */ | ||
301 | const long long fp_one = (1 << fracbits); | ||
302 | const long long fp_half = (1 << (fracbits - 1)); | ||
303 | const long long fp_two = (2 << fracbits); | ||
304 | const long long fp_mask = (fp_one - 1); | ||
305 | const long long fp_ln2_inv = (FP28_LN2_INV >> (28 - fracbits)); | ||
306 | const long long fp_ln2 = (FP28_LN2 >> (28 - fracbits)); | ||
307 | const long long fp_ln10 = (FP28_LN10 >> (28 - fracbits)); | ||
308 | const long long fp_exp_zero = (FP28_EXP_ZERO >> (28 - fracbits)); | ||
309 | const long long fp_exp_one = (FP28_EXP_ONE >> (28 - fracbits)); | ||
310 | const long long fp_exp_two = (FP28_EXP_TWO >> (28 - fracbits)); | ||
311 | |||
312 | /* exp(0) = 1 */ | ||
313 | if (x == 0) | ||
314 | { | ||
315 | return fp_one; | ||
316 | } | ||
317 | |||
318 | /* convert from base 10 to base e */ | ||
319 | x = FP_MUL64(x, fp_ln10); | ||
320 | |||
321 | /* calculate exp(x) */ | ||
322 | k = (FP_MUL64(abs(x), fp_ln2_inv) + fp_half) & ~fp_mask; | ||
323 | |||
324 | if (x < 0) | ||
325 | { | ||
326 | k = -k; | ||
327 | } | ||
328 | |||
329 | x -= FP_MUL64(k, fp_ln2); | ||
330 | z = FP_MUL64(x, x); | ||
331 | R = fp_two + FP_MUL64(z, fp_exp_zero + FP_MUL64(z, fp_exp_one | ||
332 | + FP_MUL64(z, fp_exp_two))); | ||
333 | xp = fp_one + FP_DIV64(FP_MUL64(fp_two, x), R - x); | ||
334 | |||
335 | if (k < 0) | ||
336 | { | ||
337 | k = fp_one >> (-k >> fracbits); | ||
338 | } | ||
339 | else | ||
340 | { | ||
341 | k = fp_one << (k >> fracbits); | ||
342 | } | ||
343 | |||
344 | return FP_MUL64(k, xp); | ||
345 | } | ||
346 | |||
347 | |||
348 | #if 0 /* useful code, but not currently used */ | ||
349 | /** FIXED POINT LOG10 | ||
350 | * Return log10(x) as FP integer. Argument is FP integer. | ||
351 | */ | ||
352 | static long long fp_log10(long long n, unsigned int fracbits) | ||
353 | { | ||
354 | /* Calculate log2 of argument */ | ||
355 | |||
356 | long long log2, frac; | ||
357 | const long long fp_one = (1 << fracbits); | ||
358 | const long long fp_two = (2 << fracbits); | ||
359 | const long tolerance = (1 << ((fracbits / 2) + 2)); | ||
360 | |||
361 | if (n <=0) return FP_NEGINF; | ||
362 | log2 = 0; | ||
363 | |||
364 | /* integer part */ | ||
365 | while (n < fp_one) | ||
366 | { | ||
367 | log2 -= fp_one; | ||
368 | n <<= 1; | ||
369 | } | ||
370 | while (n >= fp_two) | ||
371 | { | ||
372 | log2 += fp_one; | ||
373 | n >>= 1; | ||
374 | } | ||
375 | |||
376 | /* fractional part */ | ||
377 | frac = fp_one; | ||
378 | while (frac > tolerance) | ||
379 | { | ||
380 | frac >>= 1; | ||
381 | n = FP_MUL64(n, n); | ||
382 | if (n >= fp_two) | ||
383 | { | ||
384 | n >>= 1; | ||
385 | log2 += frac; | ||
386 | } | ||
387 | } | ||
388 | |||
389 | /* convert log2 to log10 */ | ||
390 | return FP_MUL64(log2, (FP28_LOG10OF2 >> (28 - fracbits))); | ||
391 | } | ||
392 | |||
393 | |||
394 | /** CONVERT FACTOR TO DECIBELS */ | ||
395 | long fp_decibels(unsigned long factor, unsigned int fracbits) | ||
396 | { | ||
397 | long long decibels; | ||
398 | long long f = (long long)factor; | ||
399 | bool neg; | ||
400 | |||
401 | /* keep factor in signed long range */ | ||
402 | if (f >= (1LL << 31)) | ||
403 | f = (1LL << 31) - 1; | ||
404 | |||
405 | /* decibels = 20 * log10(factor) */ | ||
406 | decibels = FP_MUL64((20LL << fracbits), fp_log10(f, fracbits)); | ||
407 | |||
408 | /* keep result in signed long range */ | ||
409 | if ((neg = (decibels < 0))) | ||
410 | decibels = -decibels; | ||
411 | if (decibels >= (1LL << 31)) | ||
412 | return neg ? FP_NEGINF : FP_INF; | ||
413 | |||
414 | return neg ? (long)-decibels : (long)decibels; | ||
415 | } | ||
416 | #endif /* unused code */ | ||
417 | |||
418 | |||
419 | /** CONVERT DECIBELS TO FACTOR */ | ||
420 | long fp_factor(long decibels, unsigned int fracbits) | ||
421 | { | ||
422 | bool neg; | ||
423 | long long factor; | ||
424 | long long db = (long long)decibels; | ||
425 | |||
426 | /* if decibels is 0, factor is 1 */ | ||
427 | if (db == 0) | ||
428 | return (1L << fracbits); | ||
429 | |||
430 | /* calculate for positive decibels only */ | ||
431 | if ((neg = (db < 0))) | ||
432 | db = -db; | ||
433 | |||
434 | /* factor = 10 ^ (decibels / 20) */ | ||
435 | factor = fp_exp10(FP_DIV64(db, (20LL << fracbits)), fracbits); | ||
436 | |||
437 | /* keep result in signed long range, return 0 if very small */ | ||
438 | if (factor >= (1LL << 31)) | ||
439 | { | ||
440 | if (neg) | ||
441 | return 0; | ||
442 | else | ||
443 | return FP_INF; | ||
444 | } | ||
445 | |||
446 | /* if negative argument, factor is 1 / result */ | ||
447 | if (neg) | ||
448 | factor = FP_DIV64((1LL << fracbits), factor); | ||
449 | |||
450 | return (long)factor; | ||
451 | } | ||
452 | #endif /* !PLUGIN and !CODEC */ | ||
diff --git a/apps/fixedpoint.h b/apps/fixedpoint.h new file mode 100644 index 0000000000..49292f3417 --- /dev/null +++ b/apps/fixedpoint.h | |||
@@ -0,0 +1,69 @@ | |||
1 | /*************************************************************************** | ||
2 | * __________ __ ___. | ||
3 | * Open \______ \ ____ ____ | | _\_ |__ _______ ___ | ||
4 | * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / | ||
5 | * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < | ||
6 | * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ | ||
7 | * \/ \/ \/ \/ \/ | ||
8 | * $Id: fixedpoint.h -1 $ | ||
9 | * | ||
10 | * Copyright (C) 2006 Jens Arnold | ||
11 | * | ||
12 | * Fixed point library for plugins | ||
13 | * | ||
14 | * This program is free software; you can redistribute it and/or | ||
15 | * modify it under the terms of the GNU General Public License | ||
16 | * as published by the Free Software Foundation; either version 2 | ||
17 | * of the License, or (at your option) any later version. | ||
18 | * | ||
19 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY | ||
20 | * KIND, either express or implied. | ||
21 | * | ||
22 | ****************************************************************************/ | ||
23 | |||
24 | /** APPS - FIXED POINT MATH ROUTINES - USAGE | ||
25 | * | ||
26 | * - x and y arguments are fixed point integers | ||
27 | * - fracbits is the number of fractional bits in the argument(s) | ||
28 | * - functions return long fixed point integers with the specified number | ||
29 | * of fractional bits unless otherwise specified | ||
30 | * | ||
31 | * Multiply two fixed point numbers: | ||
32 | * fp_mul(x, y, fracbits) | ||
33 | * | ||
34 | * Divide two fixed point numbers: | ||
35 | * fp_div(x, y, fracbits) | ||
36 | * | ||
37 | * Calculate decibel equivalent of a gain factor: | ||
38 | * fp_decibels(factor, fracbits) | ||
39 | * where fracbits is in the range 12 to 22 (higher is better), | ||
40 | * and factor is a positive fixed point integer. | ||
41 | * | ||
42 | * Calculate factor equivalent of a decibel value: | ||
43 | * fp_factor(decibels, fracbits) | ||
44 | * where fracbits is in the range 12 to 22 (lower is better), | ||
45 | * and decibels is a fixed point integer. | ||
46 | */ | ||
47 | |||
48 | #ifndef _FIXEDPOINT_H_APPS | ||
49 | #define _FIXEDPOINT_H_APPS | ||
50 | |||
51 | #define fp_mul(x, y, z) (long)((((long long)(x)) * ((long long)(y))) >> (z)) | ||
52 | #define fp_div(x, y, z) (long)((((long long)(x)) << (z)) / ((long long)(y))) | ||
53 | |||
54 | |||
55 | /** TAKEN FROM ORIGINAL fixedpoint.h */ | ||
56 | long fp_sincos(unsigned long phase, long *cos); | ||
57 | |||
58 | |||
59 | /** MODIFIED FROM replaygain.c */ | ||
60 | #define FP_INF (0x7fffffff) | ||
61 | #define FP_NEGINF -(0x7fffffff) | ||
62 | |||
63 | /* fracbits in range 12 - 22 work well. Higher is better for | ||
64 | * calculating dB, lower is better for calculating ratio. | ||
65 | */ | ||
66 | /* long fp_decibels(unsigned long factor, unsigned int fracbits); */ | ||
67 | long fp_factor(long decibels, unsigned int fracbits); | ||
68 | |||
69 | #endif | ||
diff --git a/apps/fracmul.h b/apps/fracmul.h new file mode 100644 index 0000000000..5cc83af624 --- /dev/null +++ b/apps/fracmul.h | |||
@@ -0,0 +1,93 @@ | |||
1 | #ifndef _FRACMUL_H | ||
2 | #define _FRACMUL_H | ||
3 | |||
4 | /** FRACTIONAL MULTIPLICATION - TAKEN FROM apps/dsp.h | ||
5 | * Multiply two fixed point numbers with 31 fractional bits: | ||
6 | * FRACMUL(x, y) | ||
7 | * | ||
8 | * Multiply two fixed point numbers with 31 fractional bits, | ||
9 | * then shift left by z bits: | ||
10 | * FRACMUL_SHL(x, y, z) | ||
11 | * NOTE: z must be in the range 1-8 on Coldfire targets. | ||
12 | */ | ||
13 | |||
14 | |||
15 | /* A bunch of fixed point assembler helper macros */ | ||
16 | #if defined(CPU_COLDFIRE) | ||
17 | /* These macros use the Coldfire EMAC extension and need the MACSR flags set | ||
18 | * to fractional mode with no rounding. | ||
19 | */ | ||
20 | |||
21 | /* Multiply two S.31 fractional integers and return the sign bit and the | ||
22 | * 31 most significant bits of the result. | ||
23 | */ | ||
24 | #define FRACMUL(x, y) \ | ||
25 | ({ \ | ||
26 | long t; \ | ||
27 | asm ("mac.l %[a], %[b], %%acc0\n\t" \ | ||
28 | "movclr.l %%acc0, %[t]\n\t" \ | ||
29 | : [t] "=r" (t) : [a] "r" (x), [b] "r" (y)); \ | ||
30 | t; \ | ||
31 | }) | ||
32 | |||
33 | /* Multiply two S.31 fractional integers, and return the 32 most significant | ||
34 | * bits after a shift left by the constant z. NOTE: Only works for shifts of | ||
35 | * 1 to 8 on Coldfire! | ||
36 | */ | ||
37 | #define FRACMUL_SHL(x, y, z) \ | ||
38 | ({ \ | ||
39 | long t, t2; \ | ||
40 | asm ("mac.l %[a], %[b], %%acc0\n\t" \ | ||
41 | "moveq.l %[d], %[t]\n\t" \ | ||
42 | "move.l %%accext01, %[t2]\n\t" \ | ||
43 | "and.l %[mask], %[t2]\n\t" \ | ||
44 | "lsr.l %[t], %[t2]\n\t" \ | ||
45 | "movclr.l %%acc0, %[t]\n\t" \ | ||
46 | "asl.l %[c], %[t]\n\t" \ | ||
47 | "or.l %[t2], %[t]\n\t" \ | ||
48 | : [t] "=&d" (t), [t2] "=&d" (t2) \ | ||
49 | : [a] "r" (x), [b] "r" (y), [mask] "d" (0xff), \ | ||
50 | [c] "i" ((z)), [d] "i" (8 - (z))); \ | ||
51 | t; \ | ||
52 | }) | ||
53 | |||
54 | #elif defined(CPU_ARM) | ||
55 | |||
56 | /* Multiply two S.31 fractional integers and return the sign bit and the | ||
57 | * 31 most significant bits of the result. | ||
58 | */ | ||
59 | #define FRACMUL(x, y) \ | ||
60 | ({ \ | ||
61 | long t, t2; \ | ||
62 | asm ("smull %[t], %[t2], %[a], %[b]\n\t" \ | ||
63 | "mov %[t2], %[t2], asl #1\n\t" \ | ||
64 | "orr %[t], %[t2], %[t], lsr #31\n\t" \ | ||
65 | : [t] "=&r" (t), [t2] "=&r" (t2) \ | ||
66 | : [a] "r" (x), [b] "r" (y)); \ | ||
67 | t; \ | ||
68 | }) | ||
69 | |||
70 | /* Multiply two S.31 fractional integers, and return the 32 most significant | ||
71 | * bits after a shift left by the constant z. | ||
72 | */ | ||
73 | #define FRACMUL_SHL(x, y, z) \ | ||
74 | ({ \ | ||
75 | long t, t2; \ | ||
76 | asm ("smull %[t], %[t2], %[a], %[b]\n\t" \ | ||
77 | "mov %[t2], %[t2], asl %[c]\n\t" \ | ||
78 | "orr %[t], %[t2], %[t], lsr %[d]\n\t" \ | ||
79 | : [t] "=&r" (t), [t2] "=&r" (t2) \ | ||
80 | : [a] "r" (x), [b] "r" (y), \ | ||
81 | [c] "M" ((z) + 1), [d] "M" (31 - (z))); \ | ||
82 | t; \ | ||
83 | }) | ||
84 | |||
85 | #else | ||
86 | |||
87 | #define FRACMUL(x, y) (long) (((((long long) (x)) * ((long long) (y))) >> 31)) | ||
88 | #define FRACMUL_SHL(x, y, z) \ | ||
89 | ((long)(((((long long) (x)) * ((long long) (y))) >> (31 - (z))))) | ||
90 | |||
91 | #endif | ||
92 | |||
93 | #endif | ||
diff --git a/apps/plugins/bounce.c b/apps/plugins/bounce.c index ee4c3e443c..14bc7dea98 100644 --- a/apps/plugins/bounce.c +++ b/apps/plugins/bounce.c | |||
@@ -344,7 +344,7 @@ static void init_tables(void) | |||
344 | phase = pfrac = 0; | 344 | phase = pfrac = 0; |
345 | 345 | ||
346 | for (i = 0; i < TABLE_SIZE; i++) { | 346 | for (i = 0; i < TABLE_SIZE; i++) { |
347 | sin = fsincos(phase, NULL); | 347 | sin = fp_sincos(phase, NULL); |
348 | xtable[i] = RADIUS_X + sin / DIV_X; | 348 | xtable[i] = RADIUS_X + sin / DIV_X; |
349 | ytable[i] = RADIUS_Y + sin / DIV_Y; | 349 | ytable[i] = RADIUS_Y + sin / DIV_Y; |
350 | 350 | ||
@@ -411,7 +411,7 @@ static void init_clock(void) | |||
411 | phase = pfrac = 0; | 411 | phase = pfrac = 0; |
412 | 412 | ||
413 | for (i = 0; i < 60; i++) { | 413 | for (i = 0; i < 60; i++) { |
414 | sin = fsincos(phase, &cos); | 414 | sin = fp_sincos(phase, &cos); |
415 | xminute[i] = LCD_WIDTH/2 + sin / DIV_MX; | 415 | xminute[i] = LCD_WIDTH/2 + sin / DIV_MX; |
416 | yminute[i] = LCD_HEIGHT/2 - cos / DIV_MY; | 416 | yminute[i] = LCD_HEIGHT/2 - cos / DIV_MY; |
417 | xhour[i] = LCD_WIDTH/2 + sin / DIV_HX; | 417 | xhour[i] = LCD_WIDTH/2 + sin / DIV_HX; |
diff --git a/apps/plugins/bubbles.c b/apps/plugins/bubbles.c index 4146b45b36..44d172c4ee 100644 --- a/apps/plugins/bubbles.c +++ b/apps/plugins/bubbles.c | |||
@@ -1469,17 +1469,17 @@ static void bubbles_drawboard(struct game_context* bb) { | |||
1469 | ROW_HEIGHT*(BB_HEIGHT-2)+BUBBLE_HEIGHT); | 1469 | ROW_HEIGHT*(BB_HEIGHT-2)+BUBBLE_HEIGHT); |
1470 | 1470 | ||
1471 | /* draw arrow */ | 1471 | /* draw arrow */ |
1472 | tipx = SHOTX+BUBBLE_WIDTH/2+(((sin_int(bb->angle)>>4)*BUBBLE_WIDTH*3/2)>>10); | 1472 | tipx = SHOTX+BUBBLE_WIDTH/2+(((fp14_sin(bb->angle)>>4)*BUBBLE_WIDTH*3/2)>>10); |
1473 | tipy = SHOTY+BUBBLE_HEIGHT/2-(((cos_int(bb->angle)>>4)*BUBBLE_HEIGHT*3/2)>>10); | 1473 | tipy = SHOTY+BUBBLE_HEIGHT/2-(((fp14_cos(bb->angle)>>4)*BUBBLE_HEIGHT*3/2)>>10); |
1474 | 1474 | ||
1475 | rb->lcd_drawline(SHOTX+BUBBLE_WIDTH/2+(((sin_int(bb->angle)>>4)*BUBBLE_WIDTH/2)>>10), | 1475 | rb->lcd_drawline(SHOTX+BUBBLE_WIDTH/2+(((fp14_sin(bb->angle)>>4)*BUBBLE_WIDTH/2)>>10), |
1476 | SHOTY+BUBBLE_HEIGHT/2-(((cos_int(bb->angle)>>4)*BUBBLE_HEIGHT/2)>>10), | 1476 | SHOTY+BUBBLE_HEIGHT/2-(((fp14_cos(bb->angle)>>4)*BUBBLE_HEIGHT/2)>>10), |
1477 | tipx, tipy); | 1477 | tipx, tipy); |
1478 | xlcd_filltriangle(tipx, tipy, | 1478 | xlcd_filltriangle(tipx, tipy, |
1479 | tipx+(((sin_int(bb->angle-135)>>4)*BUBBLE_WIDTH/3)>>10), | 1479 | tipx+(((fp14_sin(bb->angle-135)>>4)*BUBBLE_WIDTH/3)>>10), |
1480 | tipy-(((cos_int(bb->angle-135)>>4)*BUBBLE_HEIGHT/3)>>10), | 1480 | tipy-(((fp14_cos(bb->angle-135)>>4)*BUBBLE_HEIGHT/3)>>10), |
1481 | tipx+(((sin_int(bb->angle+135)>>4)*BUBBLE_WIDTH/3)>>10), | 1481 | tipx+(((fp14_sin(bb->angle+135)>>4)*BUBBLE_WIDTH/3)>>10), |
1482 | tipy-(((cos_int(bb->angle+135)>>4)*BUBBLE_HEIGHT/3)>>10)); | 1482 | tipy-(((fp14_cos(bb->angle+135)>>4)*BUBBLE_HEIGHT/3)>>10)); |
1483 | 1483 | ||
1484 | /* draw text */ | 1484 | /* draw text */ |
1485 | rb->lcd_getstringsize(level, &w, &h); | 1485 | rb->lcd_getstringsize(level, &w, &h); |
@@ -1524,8 +1524,8 @@ static int bubbles_fire(struct game_context* bb) { | |||
1524 | 1524 | ||
1525 | /* get current bubble */ | 1525 | /* get current bubble */ |
1526 | bubblecur = bb->queue[bb->nextinq]; | 1526 | bubblecur = bb->queue[bb->nextinq]; |
1527 | shotxinc = ((sin_int(bb->angle)>>4)*BUBBLE_WIDTH)/3; | 1527 | shotxinc = ((fp14_sin(bb->angle)>>4)*BUBBLE_WIDTH)/3; |
1528 | shotyinc = ((-1*(cos_int(bb->angle)>>4))*BUBBLE_HEIGHT)/3; | 1528 | shotyinc = ((-1*(fp14_cos(bb->angle)>>4))*BUBBLE_HEIGHT)/3; |
1529 | shotxofs = shotyofs = 0; | 1529 | shotxofs = shotyofs = 0; |
1530 | 1530 | ||
1531 | /* advance the queue */ | 1531 | /* advance the queue */ |
diff --git a/apps/plugins/clock/clock_draw_analog.c b/apps/plugins/clock/clock_draw_analog.c index c41ec3b24c..9efe3623a3 100644 --- a/apps/plugins/clock/clock_draw_analog.c +++ b/apps/plugins/clock/clock_draw_analog.c | |||
@@ -41,11 +41,11 @@ void polar_to_cartesian(int a, int r, int* x, int* y) | |||
41 | { | 41 | { |
42 | #if CONFIG_LCD == LCD_SSD1815 | 42 | #if CONFIG_LCD == LCD_SSD1815 |
43 | /* Correct non-square pixel aspect of archos recorder LCD */ | 43 | /* Correct non-square pixel aspect of archos recorder LCD */ |
44 | *x = (sin_int(a) * 5 / 4 * r) >> 14; | 44 | *x = (fp14_sin(a) * 5 / 4 * r) >> 14; |
45 | #else | 45 | #else |
46 | *x = (sin_int(a) * r) >> 14; | 46 | *x = (fp14_sin(a) * r) >> 14; |
47 | #endif | 47 | #endif |
48 | *y = (sin_int(a-90) * r) >> 14; | 48 | *y = (fp14_sin(a-90) * r) >> 14; |
49 | } | 49 | } |
50 | 50 | ||
51 | void polar_to_cartesian_screen_centered(struct screen * display, | 51 | void polar_to_cartesian_screen_centered(struct screen * display, |
diff --git a/apps/plugins/cube.c b/apps/plugins/cube.c index 55219e5a5e..c770214700 100644 --- a/apps/plugins/cube.c +++ b/apps/plugins/cube.c | |||
@@ -433,12 +433,12 @@ static void cube_rotate(int xa, int ya, int za) | |||
433 | /* Just to prevent unnecessary lookups */ | 433 | /* Just to prevent unnecessary lookups */ |
434 | long sxa, cxa, sya, cya, sza, cza; | 434 | long sxa, cxa, sya, cya, sza, cza; |
435 | 435 | ||
436 | sxa = sin_int(xa); | 436 | sxa = fp14_sin(xa); |
437 | cxa = cos_int(xa); | 437 | cxa = fp14_cos(xa); |
438 | sya = sin_int(ya); | 438 | sya = fp14_sin(ya); |
439 | cya = cos_int(ya); | 439 | cya = fp14_cos(ya); |
440 | sza = sin_int(za); | 440 | sza = fp14_sin(za); |
441 | cza = cos_int(za); | 441 | cza = fp14_cos(za); |
442 | 442 | ||
443 | /* calculate overall translation matrix */ | 443 | /* calculate overall translation matrix */ |
444 | matrice[0][0] = (cza * cya) >> 14; | 444 | matrice[0][0] = (cza * cya) >> 14; |
diff --git a/apps/plugins/lib/fixedpoint.c b/apps/plugins/lib/fixedpoint.c index 0ae2cded69..352e246673 100644 --- a/apps/plugins/lib/fixedpoint.c +++ b/apps/plugins/lib/fixedpoint.c | |||
@@ -1,238 +1 @@ | |||
1 | /*************************************************************************** | #include "../../fixedpoint.c" | |
2 | * __________ __ ___. | ||
3 | * Open \______ \ ____ ____ | | _\_ |__ _______ ___ | ||
4 | * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / | ||
5 | * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < | ||
6 | * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ | ||
7 | * \/ \/ \/ \/ \/ | ||
8 | * $Id$ | ||
9 | * | ||
10 | * Copyright (C) 2006 Jens Arnold | ||
11 | * | ||
12 | * Fixed point library for plugins | ||
13 | * | ||
14 | * This program is free software; you can redistribute it and/or | ||
15 | * modify it under the terms of the GNU General Public License | ||
16 | * as published by the Free Software Foundation; either version 2 | ||
17 | * of the License, or (at your option) any later version. | ||
18 | * | ||
19 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY | ||
20 | * KIND, either express or implied. | ||
21 | * | ||
22 | ****************************************************************************/ | ||
23 | |||
24 | #include <inttypes.h> | ||
25 | #include "plugin.h" | ||
26 | #include "fixedpoint.h" | ||
27 | |||
28 | /* Inverse gain of circular cordic rotation in s0.31 format. */ | ||
29 | static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */ | ||
30 | |||
31 | /* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */ | ||
32 | static const unsigned long atan_table[] = { | ||
33 | 0x1fffffff, /* +0.785398163 (or pi/4) */ | ||
34 | 0x12e4051d, /* +0.463647609 */ | ||
35 | 0x09fb385b, /* +0.244978663 */ | ||
36 | 0x051111d4, /* +0.124354995 */ | ||
37 | 0x028b0d43, /* +0.062418810 */ | ||
38 | 0x0145d7e1, /* +0.031239833 */ | ||
39 | 0x00a2f61e, /* +0.015623729 */ | ||
40 | 0x00517c55, /* +0.007812341 */ | ||
41 | 0x0028be53, /* +0.003906230 */ | ||
42 | 0x00145f2e, /* +0.001953123 */ | ||
43 | 0x000a2f98, /* +0.000976562 */ | ||
44 | 0x000517cc, /* +0.000488281 */ | ||
45 | 0x00028be6, /* +0.000244141 */ | ||
46 | 0x000145f3, /* +0.000122070 */ | ||
47 | 0x0000a2f9, /* +0.000061035 */ | ||
48 | 0x0000517c, /* +0.000030518 */ | ||
49 | 0x000028be, /* +0.000015259 */ | ||
50 | 0x0000145f, /* +0.000007629 */ | ||
51 | 0x00000a2f, /* +0.000003815 */ | ||
52 | 0x00000517, /* +0.000001907 */ | ||
53 | 0x0000028b, /* +0.000000954 */ | ||
54 | 0x00000145, /* +0.000000477 */ | ||
55 | 0x000000a2, /* +0.000000238 */ | ||
56 | 0x00000051, /* +0.000000119 */ | ||
57 | 0x00000028, /* +0.000000060 */ | ||
58 | 0x00000014, /* +0.000000030 */ | ||
59 | 0x0000000a, /* +0.000000015 */ | ||
60 | 0x00000005, /* +0.000000007 */ | ||
61 | 0x00000002, /* +0.000000004 */ | ||
62 | 0x00000001, /* +0.000000002 */ | ||
63 | 0x00000000, /* +0.000000001 */ | ||
64 | 0x00000000, /* +0.000000000 */ | ||
65 | }; | ||
66 | |||
67 | /* Precalculated sine and cosine * 16384 (2^14) (fixed point 18.14) */ | ||
68 | static const short sin_table[91] = | ||
69 | { | ||
70 | 0, 285, 571, 857, 1142, 1427, 1712, 1996, 2280, 2563, | ||
71 | 2845, 3126, 3406, 3685, 3963, 4240, 4516, 4790, 5062, 5334, | ||
72 | 5603, 5871, 6137, 6401, 6663, 6924, 7182, 7438, 7691, 7943, | ||
73 | 8191, 8438, 8682, 8923, 9161, 9397, 9630, 9860, 10086, 10310, | ||
74 | 10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365, | ||
75 | 12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043, | ||
76 | 14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295, | ||
77 | 15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082, | ||
78 | 16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381, | ||
79 | 16384 | ||
80 | }; | ||
81 | |||
82 | /** | ||
83 | * Implements sin and cos using CORDIC rotation. | ||
84 | * | ||
85 | * @param phase has range from 0 to 0xffffffff, representing 0 and | ||
86 | * 2*pi respectively. | ||
87 | * @param cos return address for cos | ||
88 | * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX, | ||
89 | * representing -1 and 1 respectively. | ||
90 | */ | ||
91 | long fsincos(unsigned long phase, long *cos) | ||
92 | { | ||
93 | int32_t x, x1, y, y1; | ||
94 | unsigned long z, z1; | ||
95 | int i; | ||
96 | |||
97 | /* Setup initial vector */ | ||
98 | x = cordic_circular_gain; | ||
99 | y = 0; | ||
100 | z = phase; | ||
101 | |||
102 | /* The phase has to be somewhere between 0..pi for this to work right */ | ||
103 | if (z < 0xffffffff / 4) { | ||
104 | /* z in first quadrant, z += pi/2 to correct */ | ||
105 | x = -x; | ||
106 | z += 0xffffffff / 4; | ||
107 | } else if (z < 3 * (0xffffffff / 4)) { | ||
108 | /* z in third quadrant, z -= pi/2 to correct */ | ||
109 | z -= 0xffffffff / 4; | ||
110 | } else { | ||
111 | /* z in fourth quadrant, z -= 3pi/2 to correct */ | ||
112 | x = -x; | ||
113 | z -= 3 * (0xffffffff / 4); | ||
114 | } | ||
115 | |||
116 | /* Each iteration adds roughly 1-bit of extra precision */ | ||
117 | for (i = 0; i < 31; i++) { | ||
118 | x1 = x >> i; | ||
119 | y1 = y >> i; | ||
120 | z1 = atan_table[i]; | ||
121 | |||
122 | /* Decided which direction to rotate vector. Pivot point is pi/2 */ | ||
123 | if (z >= 0xffffffff / 4) { | ||
124 | x -= y1; | ||
125 | y += x1; | ||
126 | z -= z1; | ||
127 | } else { | ||
128 | x += y1; | ||
129 | y -= x1; | ||
130 | z += z1; | ||
131 | } | ||
132 | } | ||
133 | |||
134 | if (cos) | ||
135 | *cos = x; | ||
136 | |||
137 | return y; | ||
138 | } | ||
139 | |||
140 | /** | ||
141 | * Fixed point square root via Newton-Raphson. | ||
142 | * @param a square root argument. | ||
143 | * @param fracbits specifies number of fractional bits in argument. | ||
144 | * @return Square root of argument in same fixed point format as input. | ||
145 | */ | ||
146 | long fsqrt(long a, unsigned int fracbits) | ||
147 | { | ||
148 | long b = a/2 + BIT_N(fracbits); /* initial approximation */ | ||
149 | unsigned n; | ||
150 | const unsigned iterations = 4; | ||
151 | |||
152 | for (n = 0; n < iterations; ++n) | ||
153 | b = (b + (long)(((long long)(a) << fracbits)/b))/2; | ||
154 | |||
155 | return b; | ||
156 | } | ||
157 | |||
158 | /** | ||
159 | * Fixed point sinus using a lookup table | ||
160 | * don't forget to divide the result by 16384 to get the actual sinus value | ||
161 | * @param val sinus argument in degree | ||
162 | * @return sin(val)*16384 | ||
163 | */ | ||
164 | long sin_int(int val) | ||
165 | { | ||
166 | val = (val+360)%360; | ||
167 | if (val < 181) | ||
168 | { | ||
169 | if (val < 91)/* phase 0-90 degree */ | ||
170 | return (long)sin_table[val]; | ||
171 | else/* phase 91-180 degree */ | ||
172 | return (long)sin_table[180-val]; | ||
173 | } | ||
174 | else | ||
175 | { | ||
176 | if (val < 271)/* phase 181-270 degree */ | ||
177 | return -(long)sin_table[val-180]; | ||
178 | else/* phase 270-359 degree */ | ||
179 | return -(long)sin_table[360-val]; | ||
180 | } | ||
181 | return 0; | ||
182 | } | ||
183 | |||
184 | /** | ||
185 | * Fixed point cosinus using a lookup table | ||
186 | * don't forget to divide the result by 16384 to get the actual cosinus value | ||
187 | * @param val sinus argument in degree | ||
188 | * @return cos(val)*16384 | ||
189 | */ | ||
190 | long cos_int(int val) | ||
191 | { | ||
192 | val = (val+360)%360; | ||
193 | if (val < 181) | ||
194 | { | ||
195 | if (val < 91)/* phase 0-90 degree */ | ||
196 | return (long)sin_table[90-val]; | ||
197 | else/* phase 91-180 degree */ | ||
198 | return -(long)sin_table[val-90]; | ||
199 | } | ||
200 | else | ||
201 | { | ||
202 | if (val < 271)/* phase 181-270 degree */ | ||
203 | return -(long)sin_table[270-val]; | ||
204 | else/* phase 270-359 degree */ | ||
205 | return (long)sin_table[val-270]; | ||
206 | } | ||
207 | return 0; | ||
208 | } | ||
209 | |||
210 | /** | ||
211 | * Fixed-point natural log | ||
212 | * taken from http://www.quinapalus.com/efunc.html | ||
213 | * "The code assumes integers are at least 32 bits long. The (positive) | ||
214 | * argument and the result of the function are both expressed as fixed-point | ||
215 | * values with 16 fractional bits, although intermediates are kept with 28 | ||
216 | * bits of precision to avoid loss of accuracy during shifts." | ||
217 | */ | ||
218 | |||
219 | long flog(int x) { | ||
220 | long t,y; | ||
221 | |||
222 | y=0xa65af; | ||
223 | if(x<0x00008000) x<<=16, y-=0xb1721; | ||
224 | if(x<0x00800000) x<<= 8, y-=0x58b91; | ||
225 | if(x<0x08000000) x<<= 4, y-=0x2c5c8; | ||
226 | if(x<0x20000000) x<<= 2, y-=0x162e4; | ||
227 | if(x<0x40000000) x<<= 1, y-=0x0b172; | ||
228 | t=x+(x>>1); if((t&0x80000000)==0) x=t,y-=0x067cd; | ||
229 | t=x+(x>>2); if((t&0x80000000)==0) x=t,y-=0x03920; | ||
230 | t=x+(x>>3); if((t&0x80000000)==0) x=t,y-=0x01e27; | ||
231 | t=x+(x>>4); if((t&0x80000000)==0) x=t,y-=0x00f85; | ||
232 | t=x+(x>>5); if((t&0x80000000)==0) x=t,y-=0x007e1; | ||
233 | t=x+(x>>6); if((t&0x80000000)==0) x=t,y-=0x003f8; | ||
234 | t=x+(x>>7); if((t&0x80000000)==0) x=t,y-=0x001fe; | ||
235 | x=0x80000000-x; | ||
236 | y-=x>>15; | ||
237 | return y; | ||
238 | } | ||
diff --git a/apps/plugins/lib/fixedpoint.h b/apps/plugins/lib/fixedpoint.h index dfabbad8dc..ef50dd0085 100644 --- a/apps/plugins/lib/fixedpoint.h +++ b/apps/plugins/lib/fixedpoint.h | |||
@@ -21,11 +21,44 @@ | |||
21 | * | 21 | * |
22 | ****************************************************************************/ | 22 | ****************************************************************************/ |
23 | 23 | ||
24 | long fsincos(unsigned long phase, long *cos); | 24 | /** PLUGINS - FIXED POINT MATH ROUTINES - USAGE |
25 | long fsqrt(long a, unsigned int fracbits); | 25 | * |
26 | long cos_int(int val); | 26 | * - x and y arguments are fixed point integers |
27 | long sin_int(int val); | 27 | * - fracbits is the number of fractional bits in the argument(s) |
28 | long flog(int x); | 28 | * - functions return long fixed point integers with the specified number |
29 | * of fractional bits unless otherwise specified | ||
30 | * | ||
31 | * Calculate sin and cos of an angle: | ||
32 | * fp_sincos(phase, *cos) | ||
33 | * where phase is a 32 bit unsigned integer with 0 representing 0 | ||
34 | * and 0xFFFFFFFF representing 2*pi, and *cos is the address to | ||
35 | * a long signed integer. Value returned is a long signed integer | ||
36 | * from LONG_MIN to LONG_MAX, representing -1 to 1 respectively. | ||
37 | * That is, value is a fixed point integer with 31 fractional bits. | ||
38 | * | ||
39 | * Take square root of a fixed point number: | ||
40 | * fp_sqrt(x, fracbits) | ||
41 | * | ||
42 | * Calculate sin or cos of an angle (very fast, from a table): | ||
43 | * fp14_sin(angle) | ||
44 | * fp14_cos(angle) | ||
45 | * where angle is a non-fixed point integer in degrees. Value | ||
46 | * returned is a fixed point integer with 14 fractional bits. | ||
47 | * | ||
48 | * Calculate the natural log of a positive fixed point integer | ||
49 | * fp16_log(x) | ||
50 | * where x and the value returned are fixed point integers | ||
51 | * with 16 fractional bits. | ||
52 | */ | ||
53 | |||
54 | #ifndef _FIXEDPOINT_H_PLUGINS | ||
55 | #define _FIXEDPOINT_H_PLUGINS | ||
56 | |||
57 | long fp_sincos(unsigned long phase, long *cos); | ||
58 | long fp_sqrt(long a, unsigned int fracbits); | ||
59 | long fp14_cos(int val); | ||
60 | long fp14_sin(int val); | ||
61 | long fp16_log(int x); | ||
29 | 62 | ||
30 | /* fast unsigned multiplication (16x16bit->32bit or 32x32bit->32bit, | 63 | /* fast unsigned multiplication (16x16bit->32bit or 32x32bit->32bit, |
31 | * whichever is faster for the architecture) */ | 64 | * whichever is faster for the architecture) */ |
@@ -34,3 +67,5 @@ long flog(int x); | |||
34 | #else /* SH1, coldfire */ | 67 | #else /* SH1, coldfire */ |
35 | #define FMULU(a, b) ((uint32_t) (((uint16_t) (a)) * ((uint16_t) (b)))) | 68 | #define FMULU(a, b) ((uint32_t) (((uint16_t) (a)) * ((uint16_t) (b)))) |
36 | #endif | 69 | #endif |
70 | |||
71 | #endif | ||
diff --git a/apps/plugins/plasma.c b/apps/plugins/plasma.c index 2a3e43e6b8..00287eb0b8 100644 --- a/apps/plugins/plasma.c +++ b/apps/plugins/plasma.c | |||
@@ -198,7 +198,7 @@ static void wave_table_generate(void) | |||
198 | for (i=0;i<256;++i) | 198 | for (i=0;i<256;++i) |
199 | { | 199 | { |
200 | wave_array[i] = (unsigned char)((WAV_AMP | 200 | wave_array[i] = (unsigned char)((WAV_AMP |
201 | * (sin_int((i * 360 * plasma_frequency) / 256))) / 16384); | 201 | * (fp14_sin((i * 360 * plasma_frequency) / 256))) / 16384); |
202 | } | 202 | } |
203 | } | 203 | } |
204 | 204 | ||
diff --git a/apps/plugins/vu_meter.c b/apps/plugins/vu_meter.c index 16aac3a011..74c3b1cf97 100644 --- a/apps/plugins/vu_meter.c +++ b/apps/plugins/vu_meter.c | |||
@@ -415,7 +415,7 @@ void calc_scales(void) | |||
415 | for (i=1; i <= half_width; i++) | 415 | for (i=1; i <= half_width; i++) |
416 | { | 416 | { |
417 | /* analog scale */ | 417 | /* analog scale */ |
418 | y = (half_width/5)*flog(i*fx_log_factor); | 418 | y = (half_width/5)*fp16_log(i*fx_log_factor); |
419 | 419 | ||
420 | /* better way of checking for negative values? */ | 420 | /* better way of checking for negative values? */ |
421 | z = y>>16; | 421 | z = y>>16; |
@@ -431,7 +431,7 @@ void calc_scales(void) | |||
431 | k = nh2 - ( j * j ); | 431 | k = nh2 - ( j * j ); |
432 | 432 | ||
433 | /* fsqrt+1 seems to give a closer approximation */ | 433 | /* fsqrt+1 seems to give a closer approximation */ |
434 | y_values[i-1] = LCD_HEIGHT - (fsqrt(k, 16)>>8) - 1; | 434 | y_values[i-1] = LCD_HEIGHT - (fp_sqrt(k, 16)>>8) - 1; |
435 | rb->yield(); | 435 | rb->yield(); |
436 | } | 436 | } |
437 | } | 437 | } |
diff --git a/apps/replaygain.c b/apps/replaygain.c index 90944f91d0..b398afc294 100644 --- a/apps/replaygain.c +++ b/apps/replaygain.c | |||
@@ -30,188 +30,11 @@ | |||
30 | #include "metadata.h" | 30 | #include "metadata.h" |
31 | #include "debug.h" | 31 | #include "debug.h" |
32 | #include "replaygain.h" | 32 | #include "replaygain.h" |
33 | 33 | #include "fixedpoint.h" | |
34 | /* The fixed point math routines (with the exception of fp_atof) are based | ||
35 | * on oMathFP by Dan Carter (http://orbisstudios.com). | ||
36 | */ | ||
37 | |||
38 | /* 12 bits of precision gives fairly accurate result, but still allows a | ||
39 | * compact implementation. The math code supports up to 13... | ||
40 | */ | ||
41 | 34 | ||
42 | #define FP_BITS (12) | 35 | #define FP_BITS (12) |
43 | #define FP_MASK ((1 << FP_BITS) - 1) | ||
44 | #define FP_ONE (1 << FP_BITS) | 36 | #define FP_ONE (1 << FP_BITS) |
45 | #define FP_TWO (2 << FP_BITS) | ||
46 | #define FP_HALF (1 << (FP_BITS - 1)) | ||
47 | #define FP_LN2 ( 45426 >> (16 - FP_BITS)) | ||
48 | #define FP_LN2_INV ( 94548 >> (16 - FP_BITS)) | ||
49 | #define FP_EXP_ZERO ( 10922 >> (16 - FP_BITS)) | ||
50 | #define FP_EXP_ONE ( -182 >> (16 - FP_BITS)) | ||
51 | #define FP_EXP_TWO ( 4 >> (16 - FP_BITS)) | ||
52 | #define FP_INF (0x7fffffff) | ||
53 | #define FP_LN10 (150902 >> (16 - FP_BITS)) | ||
54 | |||
55 | #define FP_MAX_DIGITS (4) | ||
56 | #define FP_MAX_DIGITS_INT (10000) | ||
57 | |||
58 | #define FP_FAST_MUL_DIV | ||
59 | |||
60 | #ifdef FP_FAST_MUL_DIV | ||
61 | |||
62 | /* These macros can easily overflow, but they are good enough for our uses, | ||
63 | * and saves some code. | ||
64 | */ | ||
65 | #define fp_mul(x, y) (((x) * (y)) >> FP_BITS) | ||
66 | #define fp_div(x, y) (((x) << FP_BITS) / (y)) | ||
67 | |||
68 | #else | ||
69 | |||
70 | static long fp_mul(long x, long y) | ||
71 | { | ||
72 | long x_neg = 0; | ||
73 | long y_neg = 0; | ||
74 | long rc; | ||
75 | |||
76 | if ((x == 0) || (y == 0)) | ||
77 | { | ||
78 | return 0; | ||
79 | } | ||
80 | |||
81 | if (x < 0) | ||
82 | { | ||
83 | x_neg = 1; | ||
84 | x = -x; | ||
85 | } | ||
86 | |||
87 | if (y < 0) | ||
88 | { | ||
89 | y_neg = 1; | ||
90 | y = -y; | ||
91 | } | ||
92 | |||
93 | rc = (((x >> FP_BITS) * (y >> FP_BITS)) << FP_BITS) | ||
94 | + (((x & FP_MASK) * (y & FP_MASK)) >> FP_BITS) | ||
95 | + ((x & FP_MASK) * (y >> FP_BITS)) | ||
96 | + ((x >> FP_BITS) * (y & FP_MASK)); | ||
97 | |||
98 | if ((x_neg ^ y_neg) == 1) | ||
99 | { | ||
100 | rc = -rc; | ||
101 | } | ||
102 | |||
103 | return rc; | ||
104 | } | ||
105 | |||
106 | static long fp_div(long x, long y) | ||
107 | { | ||
108 | long x_neg = 0; | ||
109 | long y_neg = 0; | ||
110 | long shifty; | ||
111 | long rc; | ||
112 | int msb = 0; | ||
113 | int lsb = 0; | ||
114 | |||
115 | if (x == 0) | ||
116 | { | ||
117 | return 0; | ||
118 | } | ||
119 | |||
120 | if (y == 0) | ||
121 | { | ||
122 | return (x < 0) ? -FP_INF : FP_INF; | ||
123 | } | ||
124 | |||
125 | if (x < 0) | ||
126 | { | ||
127 | x_neg = 1; | ||
128 | x = -x; | ||
129 | } | ||
130 | |||
131 | if (y < 0) | ||
132 | { | ||
133 | y_neg = 1; | ||
134 | y = -y; | ||
135 | } | ||
136 | |||
137 | while ((x & BIT_N(30 - msb)) == 0) | ||
138 | { | ||
139 | msb++; | ||
140 | } | ||
141 | |||
142 | while ((y & BIT_N(lsb)) == 0) | ||
143 | { | ||
144 | lsb++; | ||
145 | } | ||
146 | |||
147 | shifty = FP_BITS - (msb + lsb); | ||
148 | rc = ((x << msb) / (y >> lsb)); | ||
149 | 37 | ||
150 | if (shifty > 0) | ||
151 | { | ||
152 | rc <<= shifty; | ||
153 | } | ||
154 | else | ||
155 | { | ||
156 | rc >>= -shifty; | ||
157 | } | ||
158 | |||
159 | if ((x_neg ^ y_neg) == 1) | ||
160 | { | ||
161 | rc = -rc; | ||
162 | } | ||
163 | |||
164 | return rc; | ||
165 | } | ||
166 | |||
167 | #endif /* FP_FAST_MUL_DIV */ | ||
168 | |||
169 | static long fp_exp(long x) | ||
170 | { | ||
171 | long k; | ||
172 | long z; | ||
173 | long R; | ||
174 | long xp; | ||
175 | |||
176 | if (x == 0) | ||
177 | { | ||
178 | return FP_ONE; | ||
179 | } | ||
180 | |||
181 | k = (fp_mul(abs(x), FP_LN2_INV) + FP_HALF) & ~FP_MASK; | ||
182 | |||
183 | if (x < 0) | ||
184 | { | ||
185 | k = -k; | ||
186 | } | ||
187 | |||
188 | x -= fp_mul(k, FP_LN2); | ||
189 | z = fp_mul(x, x); | ||
190 | R = FP_TWO + fp_mul(z, FP_EXP_ZERO + fp_mul(z, FP_EXP_ONE | ||
191 | + fp_mul(z, FP_EXP_TWO))); | ||
192 | xp = FP_ONE + fp_div(fp_mul(FP_TWO, x), R - x); | ||
193 | |||
194 | if (k < 0) | ||
195 | { | ||
196 | k = FP_ONE >> (-k >> FP_BITS); | ||
197 | } | ||
198 | else | ||
199 | { | ||
200 | k = FP_ONE << (k >> FP_BITS); | ||
201 | } | ||
202 | |||
203 | return fp_mul(k, xp); | ||
204 | } | ||
205 | |||
206 | static long fp_exp10(long x) | ||
207 | { | ||
208 | if (x == 0) | ||
209 | { | ||
210 | return FP_ONE; | ||
211 | } | ||
212 | |||
213 | return fp_exp(fp_mul(FP_LN10, x)); | ||
214 | } | ||
215 | 38 | ||
216 | static long fp_atof(const char* s, int precision) | 39 | static long fp_atof(const char* s, int precision) |
217 | { | 40 | { |
@@ -300,7 +123,7 @@ static long convert_gain(long gain) | |||
300 | gain = 17 * FP_ONE; | 123 | gain = 17 * FP_ONE; |
301 | } | 124 | } |
302 | 125 | ||
303 | gain = fp_exp10(gain / 20) << (24 - FP_BITS); | 126 | gain = fp_factor(gain, FP_BITS) << (24 - FP_BITS); |
304 | 127 | ||
305 | return gain; | 128 | return gain; |
306 | } | 129 | } |