summaryrefslogtreecommitdiff
path: root/apps
diff options
context:
space:
mode:
Diffstat (limited to 'apps')
-rw-r--r--apps/codecs/demac/libdemac/decoder.c6
-rw-r--r--apps/codecs/demac/libdemac/parser.h31
-rw-r--r--apps/codecs/demac/libdemac/predictor.c288
-rw-r--r--apps/codecs/demac/libdemac/predictor.h8
4 files changed, 203 insertions, 130 deletions
diff --git a/apps/codecs/demac/libdemac/decoder.c b/apps/codecs/demac/libdemac/decoder.c
index ba8c393a67..4f4a583d00 100644
--- a/apps/codecs/demac/libdemac/decoder.c
+++ b/apps/codecs/demac/libdemac/decoder.c
@@ -47,7 +47,7 @@ void init_frame_decoder(struct ape_ctx_t* ape_ctx,
47 //printf("CRC=0x%08x\n",ape_ctx->CRC); 47 //printf("CRC=0x%08x\n",ape_ctx->CRC);
48 //printf("Flags=0x%08x\n",ape_ctx->frameflags); 48 //printf("Flags=0x%08x\n",ape_ctx->frameflags);
49 49
50 init_predictor_decoder(ape_ctx); 50 init_predictor_decoder(&ape_ctx->predictor);
51 51
52 switch (ape_ctx->compressiontype) 52 switch (ape_ctx->compressiontype)
53 { 53 {
@@ -117,7 +117,7 @@ int decode_chunk(struct ape_ctx_t* ape_ctx,
117 } 117 }
118 118
119 /* Now apply the predictor decoding */ 119 /* Now apply the predictor decoding */
120 predictor_decode_mono(ape_ctx,decoded0,count); 120 predictor_decode_mono(&ape_ctx->predictor,decoded0,count);
121 121
122 if (ape_ctx->channels==2) { 122 if (ape_ctx->channels==2) {
123 /* Pseudo-stereo - just copy left channel to right channel */ 123 /* Pseudo-stereo - just copy left channel to right channel */
@@ -163,7 +163,7 @@ int decode_chunk(struct ape_ctx_t* ape_ctx,
163 } 163 }
164 164
165 /* Now apply the predictor decoding */ 165 /* Now apply the predictor decoding */
166 predictor_decode_stereo(ape_ctx,decoded0,decoded1,count); 166 predictor_decode_stereo(&ape_ctx->predictor,decoded0,decoded1,count);
167 167
168 if (ape_ctx->bps == 8) { 168 if (ape_ctx->bps == 8) {
169 /* TODO: Handle 8-bit streams */ 169 /* TODO: Handle 8-bit streams */
diff --git a/apps/codecs/demac/libdemac/parser.h b/apps/codecs/demac/libdemac/parser.h
index 0e35425315..301cf4a5e1 100644
--- a/apps/codecs/demac/libdemac/parser.h
+++ b/apps/codecs/demac/libdemac/parser.h
@@ -68,24 +68,28 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
68 68
69#define HISTORY_SIZE 512 69#define HISTORY_SIZE 512
70#define PREDICTOR_ORDER 8 70#define PREDICTOR_ORDER 8
71/* Total size of all predictor histories - 50 * sizeof(int32_t) */
72#define PREDICTOR_SIZE 50
71 73
72struct predictor_t 74struct predictor_t
73{ 75{
74 /* Adaption co-efficients */
75 int32_t coeffsA[4];
76 int32_t coeffsB[5];
77
78 /* Filter histories */ 76 /* Filter histories */
79 int32_t historybuffer[HISTORY_SIZE + PREDICTOR_ORDER * 4]; 77 int32_t* buf;
80 int32_t* delayA;
81 int32_t* delayB;
82 int32_t* adaptcoeffsA;
83 int32_t* adaptcoeffsB;
84 78
85 int32_t lastA; 79 int32_t YlastA;
80 int32_t XlastA;
86 81
87 int32_t filterA; 82 int32_t YfilterA;
88 int32_t filterB; 83 int32_t XfilterA;
84 int32_t YfilterB;
85 int32_t XfilterB;
86
87 /* Adaption co-efficients */
88 int32_t YcoeffsA[4];
89 int32_t XcoeffsA[4];
90 int32_t YcoeffsB[5];
91 int32_t XcoeffsB[5];
92 int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
89}; 93};
90 94
91struct ape_ctx_t 95struct ape_ctx_t
@@ -129,8 +133,7 @@ struct ape_ctx_t
129 int frameflags; 133 int frameflags;
130 int currentframeblocks; 134 int currentframeblocks;
131 int blocksdecoded; 135 int blocksdecoded;
132 struct predictor_t predictorY; 136 struct predictor_t predictor;
133 struct predictor_t predictorX;
134}; 137};
135 138
136int ape_parseheader(int fd, struct ape_ctx_t* ape_ctx); 139int ape_parseheader(int fd, struct ape_ctx_t* ape_ctx);
diff --git a/apps/codecs/demac/libdemac/predictor.c b/apps/codecs/demac/libdemac/predictor.c
index 9531786fd1..a7210bf014 100644
--- a/apps/codecs/demac/libdemac/predictor.c
+++ b/apps/codecs/demac/libdemac/predictor.c
@@ -37,160 +37,230 @@ static const int32_t initial_coeffs[4] = {
37 360, 317, -109, 98 37 360, 317, -109, 98
38}; 38};
39 39
40static void init_predictor(struct predictor_t* p) 40#define YDELAYA (18 + PREDICTOR_ORDER*4)
41#define YDELAYB (18 + PREDICTOR_ORDER*3)
42#define XDELAYA (18 + PREDICTOR_ORDER*2)
43#define XDELAYB (18 + PREDICTOR_ORDER)
44
45#define YADAPTCOEFFSA (18)
46#define XADAPTCOEFFSA (14)
47#define YADAPTCOEFFSB (10)
48#define XADAPTCOEFFSB (5)
49
50void init_predictor_decoder(struct predictor_t* p)
41{ 51{
42 /* Zero the history buffers */ 52 /* Zero the history buffers */
43 memset(p->historybuffer, 0, (PREDICTOR_ORDER*4) * sizeof(int32_t)); 53 memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t));
44 p->delayA = p->historybuffer + PREDICTOR_ORDER*4; 54 p->buf = p->historybuffer;
45 p->delayB = p->historybuffer + PREDICTOR_ORDER*3;
46 p->adaptcoeffsA = p->historybuffer + PREDICTOR_ORDER*2;
47 p->adaptcoeffsB = p->historybuffer + PREDICTOR_ORDER;
48 55
49 /* Initialise and zero the co-efficients */ 56 /* Initialise and zero the co-efficients */
50 memcpy(p->coeffsA, initial_coeffs, sizeof(initial_coeffs)); 57 memcpy(p->YcoeffsA, initial_coeffs, sizeof(initial_coeffs));
51 memset(p->coeffsB, 0, sizeof(p->coeffsB)); 58 memcpy(p->XcoeffsA, initial_coeffs, sizeof(initial_coeffs));
52 59 memset(p->YcoeffsB, 0, sizeof(p->YcoeffsB));
53 p->filterA = 0; 60 memset(p->XcoeffsB, 0, sizeof(p->XcoeffsB));
54 p->filterB = 0; 61
55 62 p->YfilterA = 0;
56 p->lastA = 0; 63 p->YfilterB = 0;
64 p->YlastA = 0;
65
66 p->XfilterA = 0;
67 p->XfilterB = 0;
68 p->XlastA = 0;
57} 69}
58 70
59static int do_predictor_decode(struct predictor_t* p, int32_t A, int32_t B) 71#ifdef CPU_COLDFIRE
60{ 72/* Putting this in IRAM makes a small speedup (e.g. 186% -> 187%
61 int32_t predictionA, predictionB, currentA; 73 realtime for a -c1000 file on Coldfire, but is slower on PP. */
62 74int predictor_decode_stereo(struct predictor_t* p, int32_t* decoded0, int32_t* decoded1, int count) ICODE_ATTR;
63 p->delayA[0] = p->lastA; 75#endif
64 p->delayA[-1] = p->delayA[0] - p->delayA[-1];
65
66 predictionA = scalarproduct4_rev32(p->coeffsA,p->delayA);
67
68 /* Apply a scaled first-order filter compression */
69 p->delayB[0] = B - ((p->filterB * 31) >> 5);
70 p->filterB = B;
71
72 p->delayB[-1] = p->delayB[0] - p->delayB[-1];
73
74 predictionB = scalarproduct5_rev32(p->coeffsB,p->delayB);
75 76
76 currentA = A + ((predictionA + (predictionB >> 1)) >> 10); 77int predictor_decode_stereo(struct predictor_t* p, int32_t* decoded0, int32_t* decoded1, int count)
77 78{
78 p->adaptcoeffsA[0] = SIGN(p->delayA[0]); 79 int32_t predictionA, predictionB;
79 p->adaptcoeffsA[-1] = SIGN(p->delayA[-1]);
80
81 p->adaptcoeffsB[0] = SIGN(p->delayB[0]);
82 p->adaptcoeffsB[-1] = SIGN(p->delayB[-1]);
83 80
84 if (A > 0) 81 while (count--)
85 {
86 vector_sub4_rev32(p->coeffsA, p->adaptcoeffsA);
87 vector_sub5_rev32(p->coeffsB, p->adaptcoeffsB);
88 }
89 else if (A < 0)
90 { 82 {
91 vector_add4_rev32(p->coeffsA, p->adaptcoeffsA); 83 /* Predictor Y */
92 vector_add5_rev32(p->coeffsB, p->adaptcoeffsB); 84 p->buf[YDELAYA] = p->YlastA;
93 } 85 p->buf[YADAPTCOEFFSA] = SIGN(p->buf[YDELAYA]);
94 86
95 p->delayA++; 87 p->buf[YDELAYA-1] = p->buf[YDELAYA] - p->buf[YDELAYA-1];
96 p->delayB++; 88 p->buf[YADAPTCOEFFSA-1] = SIGN(p->buf[YDELAYA-1]);
97 p->adaptcoeffsA++; 89
98 p->adaptcoeffsB++; 90 predictionA = (p->buf[YDELAYA] * p->YcoeffsA[0]) +
99 91 (p->buf[YDELAYA-1] * p->YcoeffsA[1]) +
100 /* Have we filled the history buffer? */ 92 (p->buf[YDELAYA-2] * p->YcoeffsA[2]) +
101 if (p->delayA == p->historybuffer + HISTORY_SIZE + (PREDICTOR_ORDER*4)) { 93 (p->buf[YDELAYA-3] * p->YcoeffsA[3]);
102 memmove(p->historybuffer, p->delayA - (PREDICTOR_ORDER*4), 94
103 (PREDICTOR_ORDER*4) * sizeof(int32_t)); 95 /* Apply a scaled first-order filter compression */
104 p->delayA = p->historybuffer + PREDICTOR_ORDER*4; 96 p->buf[YDELAYB] = p->XfilterA - ((p->YfilterB * 31) >> 5);
105 p->delayB = p->historybuffer + PREDICTOR_ORDER*3; 97 p->buf[YADAPTCOEFFSB] = SIGN(p->buf[YDELAYB]);
106 p->adaptcoeffsA = p->historybuffer + PREDICTOR_ORDER*2; 98 p->YfilterB = p->XfilterA;
107 p->adaptcoeffsB = p->historybuffer + PREDICTOR_ORDER; 99
108 } 100 p->buf[YDELAYB-1] = p->buf[YDELAYB] - p->buf[YDELAYB-1];
101 p->buf[YADAPTCOEFFSB-1] = SIGN(p->buf[YDELAYB-1]);
102
103 predictionB = (p->buf[YDELAYB] * p->YcoeffsB[0]) +
104 (p->buf[YDELAYB-1] * p->YcoeffsB[1]) +
105 (p->buf[YDELAYB-2] * p->YcoeffsB[2]) +
106 (p->buf[YDELAYB-3] * p->YcoeffsB[3]) +
107 (p->buf[YDELAYB-4] * p->YcoeffsB[4]);
108
109 p->YlastA = *decoded0 + ((predictionA + (predictionB >> 1)) >> 10);
110 p->YfilterA = p->YlastA + ((p->YfilterA * 31) >> 5);
111
112 /* Predictor X */
113
114 p->buf[XDELAYA] = p->XlastA;
115 p->buf[XADAPTCOEFFSA] = SIGN(p->buf[XDELAYA]);
116 p->buf[XDELAYA-1] = p->buf[XDELAYA] - p->buf[XDELAYA-1];
117 p->buf[XADAPTCOEFFSA-1] = SIGN(p->buf[XDELAYA-1]);
118
119 predictionA = (p->buf[XDELAYA] * p->XcoeffsA[0]) +
120 (p->buf[XDELAYA-1] * p->XcoeffsA[1]) +
121 (p->buf[XDELAYA-2] * p->XcoeffsA[2]) +
122 (p->buf[XDELAYA-3] * p->XcoeffsA[3]);
123
124 /* Apply a scaled first-order filter compression */
125 p->buf[XDELAYB] = p->YfilterA - ((p->XfilterB * 31) >> 5);
126 p->buf[XADAPTCOEFFSB] = SIGN(p->buf[XDELAYB]);
127 p->XfilterB = p->YfilterA;
128 p->buf[XDELAYB-1] = p->buf[XDELAYB] - p->buf[XDELAYB-1];
129 p->buf[XADAPTCOEFFSB-1] = SIGN(p->buf[XDELAYB-1]);
130
131 predictionB = (p->buf[XDELAYB] * p->XcoeffsB[0]) +
132 (p->buf[XDELAYB-1] * p->XcoeffsB[1]) +
133 (p->buf[XDELAYB-2] * p->XcoeffsB[2]) +
134 (p->buf[XDELAYB-3] * p->XcoeffsB[3]) +
135 (p->buf[XDELAYB-4] * p->XcoeffsB[4]);
136
137 p->XlastA = *decoded1 + ((predictionA + (predictionB >> 1)) >> 10);
138 p->XfilterA = p->XlastA + ((p->XfilterA * 31) >> 5);
139
140 if (*decoded0 > 0)
141 {
142 p->YcoeffsA[0] -= p->buf[YADAPTCOEFFSA];
143 p->YcoeffsA[1] -= p->buf[YADAPTCOEFFSA-1];
144 p->YcoeffsA[2] -= p->buf[YADAPTCOEFFSA-2];
145 p->YcoeffsA[3] -= p->buf[YADAPTCOEFFSA-3];
146
147 p->YcoeffsB[0] -= p->buf[YADAPTCOEFFSB];
148 p->YcoeffsB[1] -= p->buf[YADAPTCOEFFSB-1];
149 p->YcoeffsB[2] -= p->buf[YADAPTCOEFFSB-2];
150 p->YcoeffsB[3] -= p->buf[YADAPTCOEFFSB-3];
151 p->YcoeffsB[4] -= p->buf[YADAPTCOEFFSB-4];
152 }
153 else if (*decoded0 < 0)
154 {
155 p->YcoeffsA[0] += p->buf[YADAPTCOEFFSA];
156 p->YcoeffsA[1] += p->buf[YADAPTCOEFFSA-1];
157 p->YcoeffsA[2] += p->buf[YADAPTCOEFFSA-2];
158 p->YcoeffsA[3] += p->buf[YADAPTCOEFFSA-3];
159
160 p->YcoeffsB[0] += p->buf[YADAPTCOEFFSB];
161 p->YcoeffsB[1] += p->buf[YADAPTCOEFFSB-1];
162 p->YcoeffsB[2] += p->buf[YADAPTCOEFFSB-2];
163 p->YcoeffsB[3] += p->buf[YADAPTCOEFFSB-3];
164 p->YcoeffsB[4] += p->buf[YADAPTCOEFFSB-4];
165 }
109 166
110 p->lastA = currentA; 167 *(decoded0++) = p->YfilterA;
111 p->filterA = currentA + ((p->filterA * 31) >> 5);
112 168
113 return p->filterA; 169 if (*decoded1 > 0)
114} 170 {
115 171 p->XcoeffsA[0] -= p->buf[XADAPTCOEFFSA];
116static int32_t X; 172 p->XcoeffsA[1] -= p->buf[XADAPTCOEFFSA-1];
173 p->XcoeffsA[2] -= p->buf[XADAPTCOEFFSA-2];
174 p->XcoeffsA[3] -= p->buf[XADAPTCOEFFSA-3];
175
176 p->XcoeffsB[0] -= p->buf[XADAPTCOEFFSB];
177 p->XcoeffsB[1] -= p->buf[XADAPTCOEFFSB-1];
178 p->XcoeffsB[2] -= p->buf[XADAPTCOEFFSB-2];
179 p->XcoeffsB[3] -= p->buf[XADAPTCOEFFSB-3];
180 p->XcoeffsB[4] -= p->buf[XADAPTCOEFFSB-4];
181 }
182 else if (*decoded1 < 0)
183 {
184 p->XcoeffsA[0] += p->buf[XADAPTCOEFFSA];
185 p->XcoeffsA[1] += p->buf[XADAPTCOEFFSA-1];
186 p->XcoeffsA[2] += p->buf[XADAPTCOEFFSA-2];
187 p->XcoeffsA[3] += p->buf[XADAPTCOEFFSA-3];
188
189 p->XcoeffsB[0] += p->buf[XADAPTCOEFFSB];
190 p->XcoeffsB[1] += p->buf[XADAPTCOEFFSB-1];
191 p->XcoeffsB[2] += p->buf[XADAPTCOEFFSB-2];
192 p->XcoeffsB[3] += p->buf[XADAPTCOEFFSB-3];
193 p->XcoeffsB[4] += p->buf[XADAPTCOEFFSB-4];
194 }
117 195
118void init_predictor_decoder(struct ape_ctx_t* ape_ctx) 196 *(decoded1++) = p->XfilterA;
119{
120 X = 0;
121 197
122 init_predictor(&ape_ctx->predictorY); 198 /* Combined */
123 init_predictor(&ape_ctx->predictorX); 199 p->buf++;
124}
125 200
126int predictor_decode_stereo(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int32_t* decoded1, int count) ICODE_ATTR; 201 /* Have we filled the history buffer? */
127int predictor_decode_stereo(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int32_t* decoded1, int count) 202 if (p->buf == p->historybuffer + HISTORY_SIZE) {
128{ 203 memmove(p->historybuffer, p->buf,
129 while (count--) 204 PREDICTOR_SIZE * sizeof(int32_t));
130 { 205 p->buf = p->historybuffer;
131 *decoded0 = do_predictor_decode(&ape_ctx->predictorY, *decoded0, X); 206 }
132 X = do_predictor_decode(&ape_ctx->predictorX, *decoded1, *(decoded0)++);
133 *(decoded1++) = X;
134 } 207 }
135 208
136 return 0; 209 return 0;
137} 210}
138 211
139int predictor_decode_mono(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int count) 212int predictor_decode_mono(struct predictor_t* p, int32_t* decoded0, int count)
140{ 213{
141 struct predictor_t* p = &ape_ctx->predictorY;
142 int32_t predictionA, currentA, A; 214 int32_t predictionA, currentA, A;
143 215
144 currentA = p->lastA; 216 currentA = p->YlastA;
145 217
146 while (count--) 218 while (count--)
147 { 219 {
148 A = *decoded0; 220 A = *decoded0;
149 221
150 p->delayA[0] = currentA; 222 p->buf[YDELAYA] = currentA;
151 p->delayA[-1] = p->delayA[0] - p->delayA[-1]; 223 p->buf[YDELAYA-1] = p->buf[YDELAYA] - p->buf[YDELAYA-1];
152 224
153 predictionA = (p->delayA[0] * p->coeffsA[0]) + 225 predictionA = (p->buf[YDELAYA] * p->YcoeffsA[0]) +
154 (p->delayA[-1] * p->coeffsA[1]) + 226 (p->buf[YDELAYA-1] * p->YcoeffsA[1]) +
155 (p->delayA[-2] * p->coeffsA[2]) + 227 (p->buf[YDELAYA-2] * p->YcoeffsA[2]) +
156 (p->delayA[-3] * p->coeffsA[3]); 228 (p->buf[YDELAYA-3] * p->YcoeffsA[3]);
157 229
158 currentA = A + (predictionA >> 10); 230 currentA = A + (predictionA >> 10);
159 231
160 p->adaptcoeffsA[0] = SIGN(p->delayA[0]); 232 p->buf[YADAPTCOEFFSA] = SIGN(p->buf[YDELAYA]);
161 p->adaptcoeffsA[-1] = SIGN(p->delayA[-1]); 233 p->buf[YADAPTCOEFFSA-1] = SIGN(p->buf[YDELAYA-1]);
162 234
163 if (A > 0) 235 if (A > 0)
164 { 236 {
165 p->coeffsA[0] -= p->adaptcoeffsA[0]; 237 p->YcoeffsA[0] -= p->buf[YADAPTCOEFFSA];
166 p->coeffsA[1] -= p->adaptcoeffsA[-1]; 238 p->YcoeffsA[1] -= p->buf[YADAPTCOEFFSA-1];
167 p->coeffsA[2] -= p->adaptcoeffsA[-2]; 239 p->YcoeffsA[2] -= p->buf[YADAPTCOEFFSA-2];
168 p->coeffsA[3] -= p->adaptcoeffsA[-3]; 240 p->YcoeffsA[3] -= p->buf[YADAPTCOEFFSA-3];
169 } 241 }
170 else if (A < 0) 242 else if (A < 0)
171 { 243 {
172 p->coeffsA[0] += p->adaptcoeffsA[0]; 244 p->YcoeffsA[0] += p->buf[YADAPTCOEFFSA];
173 p->coeffsA[1] += p->adaptcoeffsA[-1]; 245 p->YcoeffsA[1] += p->buf[YADAPTCOEFFSA-1];
174 p->coeffsA[2] += p->adaptcoeffsA[-2]; 246 p->YcoeffsA[2] += p->buf[YADAPTCOEFFSA-2];
175 p->coeffsA[3] += p->adaptcoeffsA[-3]; 247 p->YcoeffsA[3] += p->buf[YADAPTCOEFFSA-3];
176 } 248 }
177 249
178 p->delayA++; 250 p->buf++;
179 p->adaptcoeffsA++;
180 251
181 /* Have we filled the history buffer? */ 252 /* Have we filled the history buffer? */
182 if (p->delayA == p->historybuffer + HISTORY_SIZE + (PREDICTOR_ORDER*4)) { 253 if (p->buf == p->historybuffer + HISTORY_SIZE) {
183 memmove(p->historybuffer, p->delayA - (PREDICTOR_ORDER*4), 254 memmove(p->historybuffer, p->buf,
184 (PREDICTOR_ORDER*4) * sizeof(int32_t)); 255 PREDICTOR_SIZE * sizeof(int32_t));
185 p->delayA = p->historybuffer + PREDICTOR_ORDER*4; 256 p->buf = p->historybuffer;
186 p->adaptcoeffsA = p->historybuffer + PREDICTOR_ORDER*2;
187 } 257 }
188 258
189 p->filterA = currentA + ((p->filterA * 31) >> 5); 259 p->YfilterA = currentA + ((p->YfilterA * 31) >> 5);
190 *(decoded0++) = p->filterA; 260 *(decoded0++) = p->YfilterA;
191 } 261 }
192 262
193 p->lastA = currentA; 263 p->YlastA = currentA;
194 264
195 return 0; 265 return 0;
196} 266}
diff --git a/apps/codecs/demac/libdemac/predictor.h b/apps/codecs/demac/libdemac/predictor.h
index 3c023c8188..df2ba629e6 100644
--- a/apps/codecs/demac/libdemac/predictor.h
+++ b/apps/codecs/demac/libdemac/predictor.h
@@ -2,7 +2,7 @@
2 2
3libdemac - A Monkey's Audio decoder 3libdemac - A Monkey's Audio decoder
4 4
5$Id:$ 5$Id$
6 6
7Copyright (C) Dave Chapman 2007 7Copyright (C) Dave Chapman 2007
8 8
@@ -29,8 +29,8 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
29#include "parser.h" 29#include "parser.h"
30#include "filter.h" 30#include "filter.h"
31 31
32void init_predictor_decoder(struct ape_ctx_t* ape_ctx); 32void init_predictor_decoder(struct predictor_t* p);
33int predictor_decode_stereo(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int32_t* decoded1, int count); 33int predictor_decode_stereo(struct predictor_t* p, int32_t* decoded0, int32_t* decoded1, int count);
34int predictor_decode_mono(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int count); 34int predictor_decode_mono(struct predictor_t* p, int32_t* decoded0, int count);
35 35
36#endif 36#endif