summaryrefslogtreecommitdiff
path: root/apps/plugins/puzzles/src/pegs.c
diff options
context:
space:
mode:
Diffstat (limited to 'apps/plugins/puzzles/src/pegs.c')
-rw-r--r--apps/plugins/puzzles/src/pegs.c1340
1 files changed, 1340 insertions, 0 deletions
diff --git a/apps/plugins/puzzles/src/pegs.c b/apps/plugins/puzzles/src/pegs.c
new file mode 100644
index 0000000000..8286851954
--- /dev/null
+++ b/apps/plugins/puzzles/src/pegs.c
@@ -0,0 +1,1340 @@
1/*
2 * pegs.c: the classic Peg Solitaire game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
9#include <ctype.h>
10#include <math.h>
11
12#include "puzzles.h"
13#include "tree234.h"
14
15#define GRID_HOLE 0
16#define GRID_PEG 1
17#define GRID_OBST 2
18
19#define GRID_CURSOR 10
20#define GRID_JUMPING 20
21
22enum {
23 COL_BACKGROUND,
24 COL_HIGHLIGHT,
25 COL_LOWLIGHT,
26 COL_PEG,
27 COL_CURSOR,
28 NCOLOURS
29};
30
31/*
32 * Grid shapes. I do some macro ickery here to ensure that my enum
33 * and the various forms of my name list always match up.
34 */
35#define TYPELIST(A) \
36 A(CROSS,Cross,cross) \
37 A(OCTAGON,Octagon,octagon) \
38 A(RANDOM,Random,random)
39#define ENUM(upper,title,lower) TYPE_ ## upper,
40#define TITLE(upper,title,lower) #title,
41#define LOWER(upper,title,lower) #lower,
42#define CONFIG(upper,title,lower) ":" #title
43
44enum { TYPELIST(ENUM) TYPECOUNT };
45static char const *const pegs_titletypes[] = { TYPELIST(TITLE) };
46static char const *const pegs_lowertypes[] = { TYPELIST(LOWER) };
47#define TYPECONFIG TYPELIST(CONFIG)
48
49#define FLASH_FRAME 0.13F
50
51struct game_params {
52 int w, h;
53 int type;
54};
55
56struct game_state {
57 int w, h;
58 int completed;
59 unsigned char *grid;
60};
61
62static game_params *default_params(void)
63{
64 game_params *ret = snew(game_params);
65
66 ret->w = ret->h = 7;
67 ret->type = TYPE_CROSS;
68
69 return ret;
70}
71
72static const struct game_params pegs_presets[] = {
73 {7, 7, TYPE_CROSS},
74 {7, 7, TYPE_OCTAGON},
75 {5, 5, TYPE_RANDOM},
76 {7, 7, TYPE_RANDOM},
77 {9, 9, TYPE_RANDOM},
78};
79
80static int game_fetch_preset(int i, char **name, game_params **params)
81{
82 game_params *ret;
83 char str[80];
84
85 if (i < 0 || i >= lenof(pegs_presets))
86 return FALSE;
87
88 ret = snew(game_params);
89 *ret = pegs_presets[i];
90
91 strcpy(str, pegs_titletypes[ret->type]);
92 if (ret->type == TYPE_RANDOM)
93 sprintf(str + strlen(str), " %dx%d", ret->w, ret->h);
94
95 *name = dupstr(str);
96 *params = ret;
97 return TRUE;
98}
99
100static void free_params(game_params *params)
101{
102 sfree(params);
103}
104
105static game_params *dup_params(const game_params *params)
106{
107 game_params *ret = snew(game_params);
108 *ret = *params; /* structure copy */
109 return ret;
110}
111
112static void decode_params(game_params *params, char const *string)
113{
114 char const *p = string;
115 int i;
116
117 params->w = atoi(p);
118 while (*p && isdigit((unsigned char)*p)) p++;
119 if (*p == 'x') {
120 p++;
121 params->h = atoi(p);
122 while (*p && isdigit((unsigned char)*p)) p++;
123 } else {
124 params->h = params->w;
125 }
126
127 for (i = 0; i < lenof(pegs_lowertypes); i++)
128 if (!strcmp(p, pegs_lowertypes[i]))
129 params->type = i;
130}
131
132static char *encode_params(const game_params *params, int full)
133{
134 char str[80];
135
136 sprintf(str, "%dx%d", params->w, params->h);
137 if (full) {
138 assert(params->type >= 0 && params->type < lenof(pegs_lowertypes));
139 strcat(str, pegs_lowertypes[params->type]);
140 }
141 return dupstr(str);
142}
143
144static config_item *game_configure(const game_params *params)
145{
146 config_item *ret = snewn(4, config_item);
147 char buf[80];
148
149 ret[0].name = "Width";
150 ret[0].type = C_STRING;
151 sprintf(buf, "%d", params->w);
152 ret[0].sval = dupstr(buf);
153 ret[0].ival = 0;
154
155 ret[1].name = "Height";
156 ret[1].type = C_STRING;
157 sprintf(buf, "%d", params->h);
158 ret[1].sval = dupstr(buf);
159 ret[1].ival = 0;
160
161 ret[2].name = "Board type";
162 ret[2].type = C_CHOICES;
163 ret[2].sval = TYPECONFIG;
164 ret[2].ival = params->type;
165
166 ret[3].name = NULL;
167 ret[3].type = C_END;
168 ret[3].sval = NULL;
169 ret[3].ival = 0;
170
171 return ret;
172}
173
174static game_params *custom_params(const config_item *cfg)
175{
176 game_params *ret = snew(game_params);
177
178 ret->w = atoi(cfg[0].sval);
179 ret->h = atoi(cfg[1].sval);
180 ret->type = cfg[2].ival;
181
182 return ret;
183}
184
185static char *validate_params(const game_params *params, int full)
186{
187 if (full && (params->w <= 3 || params->h <= 3))
188 return "Width and height must both be greater than three";
189
190 /*
191 * It might be possible to implement generalisations of Cross
192 * and Octagon, but only if I can find a proof that they're all
193 * soluble. For the moment, therefore, I'm going to disallow
194 * them at any size other than the standard one.
195 */
196 if (full && (params->type == TYPE_CROSS || params->type == TYPE_OCTAGON)) {
197 if (params->w != 7 || params->h != 7)
198 return "This board type is only supported at 7x7";
199 }
200 return NULL;
201}
202
203/* ----------------------------------------------------------------------
204 * Beginning of code to generate random Peg Solitaire boards.
205 *
206 * This procedure is done with no aesthetic judgment, no effort at
207 * symmetry, no difficulty grading and generally no finesse
208 * whatsoever. We simply begin with an empty board containing a
209 * single peg, and repeatedly make random reverse moves until it's
210 * plausibly full. This typically yields a scrappy haphazard mess
211 * with several holes, an uneven shape, and no redeeming features
212 * except guaranteed solubility.
213 *
214 * My only concessions to sophistication are (a) to repeat the
215 * generation process until I at least get a grid that touches
216 * every edge of the specified board size, and (b) to try when
217 * selecting moves to reuse existing space rather than expanding
218 * into new space (so that non-rectangular board shape becomes a
219 * factor during play).
220 */
221
222struct move {
223 /*
224 * x,y are the start point of the move during generation (hence
225 * its endpoint during normal play).
226 *
227 * dx,dy are the direction of the move during generation.
228 * Absolute value 1. Hence, for example, x=3,y=5,dx=1,dy=0
229 * means that the move during generation starts at (3,5) and
230 * ends at (5,5), and vice versa during normal play.
231 */
232 int x, y, dx, dy;
233 /*
234 * cost is 0, 1 or 2, depending on how many GRID_OBSTs we must
235 * turn into GRID_HOLEs to play this move.
236 */
237 int cost;
238};
239
240static int movecmp(void *av, void *bv)
241{
242 struct move *a = (struct move *)av;
243 struct move *b = (struct move *)bv;
244
245 if (a->y < b->y)
246 return -1;
247 else if (a->y > b->y)
248 return +1;
249
250 if (a->x < b->x)
251 return -1;
252 else if (a->x > b->x)
253 return +1;
254
255 if (a->dy < b->dy)
256 return -1;
257 else if (a->dy > b->dy)
258 return +1;
259
260 if (a->dx < b->dx)
261 return -1;
262 else if (a->dx > b->dx)
263 return +1;
264
265 return 0;
266}
267
268static int movecmpcost(void *av, void *bv)
269{
270 struct move *a = (struct move *)av;
271 struct move *b = (struct move *)bv;
272
273 if (a->cost < b->cost)
274 return -1;
275 else if (a->cost > b->cost)
276 return +1;
277
278 return movecmp(av, bv);
279}
280
281struct movetrees {
282 tree234 *bymove, *bycost;
283};
284
285static void update_moves(unsigned char *grid, int w, int h, int x, int y,
286 struct movetrees *trees)
287{
288 struct move move;
289 int dir, pos;
290
291 /*
292 * There are twelve moves that can include (x,y): three in each
293 * of four directions. Check each one to see if it's possible.
294 */
295 for (dir = 0; dir < 4; dir++) {
296 int dx, dy;
297
298 if (dir & 1)
299 dx = 0, dy = dir - 2;
300 else
301 dy = 0, dx = dir - 1;
302
303 assert(abs(dx) + abs(dy) == 1);
304
305 for (pos = 0; pos < 3; pos++) {
306 int v1, v2, v3;
307
308 move.dx = dx;
309 move.dy = dy;
310 move.x = x - pos*dx;
311 move.y = y - pos*dy;
312
313 if (move.x < 0 || move.x >= w || move.y < 0 || move.y >= h)
314 continue; /* completely invalid move */
315 if (move.x+2*move.dx < 0 || move.x+2*move.dx >= w ||
316 move.y+2*move.dy < 0 || move.y+2*move.dy >= h)
317 continue; /* completely invalid move */
318
319 v1 = grid[move.y * w + move.x];
320 v2 = grid[(move.y+move.dy) * w + (move.x+move.dx)];
321 v3 = grid[(move.y+2*move.dy)*w + (move.x+2*move.dx)];
322 if (v1 == GRID_PEG && v2 != GRID_PEG && v3 != GRID_PEG) {
323 struct move *m;
324
325 move.cost = (v2 == GRID_OBST) + (v3 == GRID_OBST);
326
327 /*
328 * This move is possible. See if it's already in
329 * the tree.
330 */
331 m = find234(trees->bymove, &move, NULL);
332 if (m && m->cost != move.cost) {
333 /*
334 * It's in the tree but listed with the wrong
335 * cost. Remove the old version.
336 */
337#ifdef GENERATION_DIAGNOSTICS
338 printf("correcting %d%+d,%d%+d at cost %d\n",
339 m->x, m->dx, m->y, m->dy, m->cost);
340#endif
341 del234(trees->bymove, m);
342 del234(trees->bycost, m);
343 sfree(m);
344 m = NULL;
345 }
346 if (!m) {
347 struct move *m, *m2;
348 m = snew(struct move);
349 *m = move;
350 m2 = add234(trees->bymove, m);
351 m2 = add234(trees->bycost, m);
352 assert(m2 == m);
353#ifdef GENERATION_DIAGNOSTICS
354 printf("adding %d%+d,%d%+d at cost %d\n",
355 move.x, move.dx, move.y, move.dy, move.cost);
356#endif
357 } else {
358#ifdef GENERATION_DIAGNOSTICS
359 printf("not adding %d%+d,%d%+d at cost %d\n",
360 move.x, move.dx, move.y, move.dy, move.cost);
361#endif
362 }
363 } else {
364 /*
365 * This move is impossible. If it is already in the
366 * tree, delete it.
367 *
368 * (We make use here of the fact that del234
369 * doesn't have to be passed a pointer to the
370 * _actual_ element it's deleting: it merely needs
371 * one that compares equal to it, and it will
372 * return the one it deletes.)
373 */
374 struct move *m = del234(trees->bymove, &move);
375#ifdef GENERATION_DIAGNOSTICS
376 printf("%sdeleting %d%+d,%d%+d\n", m ? "" : "not ",
377 move.x, move.dx, move.y, move.dy);
378#endif
379 if (m) {
380 del234(trees->bycost, m);
381 sfree(m);
382 }
383 }
384 }
385 }
386}
387
388static void pegs_genmoves(unsigned char *grid, int w, int h, random_state *rs)
389{
390 struct movetrees atrees, *trees = &atrees;
391 struct move *m;
392 int x, y, i, nmoves;
393
394 trees->bymove = newtree234(movecmp);
395 trees->bycost = newtree234(movecmpcost);
396
397 for (y = 0; y < h; y++)
398 for (x = 0; x < w; x++)
399 if (grid[y*w+x] == GRID_PEG)
400 update_moves(grid, w, h, x, y, trees);
401
402 nmoves = 0;
403
404 while (1) {
405 int limit, maxcost, index;
406 struct move mtmp, move, *m;
407
408 /*
409 * See how many moves we can make at zero cost. Make one,
410 * if possible. Failing that, make a one-cost move, and
411 * then a two-cost one.
412 *
413 * After filling at least half the input grid, we no longer
414 * accept cost-2 moves: if that's our only option, we give
415 * up and finish.
416 */
417 mtmp.y = h+1;
418 maxcost = (nmoves < w*h/2 ? 2 : 1);
419 m = NULL; /* placate optimiser */
420 for (mtmp.cost = 0; mtmp.cost <= maxcost; mtmp.cost++) {
421 limit = -1;
422 m = findrelpos234(trees->bycost, &mtmp, NULL, REL234_LT, &limit);
423#ifdef GENERATION_DIAGNOSTICS
424 printf("%d moves available with cost %d\n", limit+1, mtmp.cost);
425#endif
426 if (m)
427 break;
428 }
429 if (!m)
430 break;
431
432 index = random_upto(rs, limit+1);
433 move = *(struct move *)index234(trees->bycost, index);
434
435#ifdef GENERATION_DIAGNOSTICS
436 printf("selecting move %d%+d,%d%+d at cost %d\n",
437 move.x, move.dx, move.y, move.dy, move.cost);
438#endif
439
440 grid[move.y * w + move.x] = GRID_HOLE;
441 grid[(move.y+move.dy) * w + (move.x+move.dx)] = GRID_PEG;
442 grid[(move.y+2*move.dy)*w + (move.x+2*move.dx)] = GRID_PEG;
443
444 for (i = 0; i <= 2; i++) {
445 int tx = move.x + i*move.dx;
446 int ty = move.y + i*move.dy;
447 update_moves(grid, w, h, tx, ty, trees);
448 }
449
450 nmoves++;
451 }
452
453 while ((m = delpos234(trees->bymove, 0)) != NULL) {
454 del234(trees->bycost, m);
455 sfree(m);
456 }
457 freetree234(trees->bymove);
458 freetree234(trees->bycost);
459}
460
461static void pegs_generate(unsigned char *grid, int w, int h, random_state *rs)
462{
463 while (1) {
464 int x, y, extremes;
465
466 memset(grid, GRID_OBST, w*h);
467 grid[(h/2) * w + (w/2)] = GRID_PEG;
468#ifdef GENERATION_DIAGNOSTICS
469 printf("beginning move selection\n");
470#endif
471 pegs_genmoves(grid, w, h, rs);
472#ifdef GENERATION_DIAGNOSTICS
473 printf("finished move selection\n");
474#endif
475
476 extremes = 0;
477 for (y = 0; y < h; y++) {
478 if (grid[y*w+0] != GRID_OBST)
479 extremes |= 1;
480 if (grid[y*w+w-1] != GRID_OBST)
481 extremes |= 2;
482 }
483 for (x = 0; x < w; x++) {
484 if (grid[0*w+x] != GRID_OBST)
485 extremes |= 4;
486 if (grid[(h-1)*w+x] != GRID_OBST)
487 extremes |= 8;
488 }
489
490 if (extremes == 15)
491 break;
492#ifdef GENERATION_DIAGNOSTICS
493 printf("insufficient extent; trying again\n");
494#endif
495 }
496#ifdef GENERATION_DIAGNOSTICS
497 fflush(stdout);
498#endif
499}
500
501/* ----------------------------------------------------------------------
502 * End of board generation code. Now for the client code which uses
503 * it as part of the puzzle.
504 */
505
506static char *new_game_desc(const game_params *params, random_state *rs,
507 char **aux, int interactive)
508{
509 int w = params->w, h = params->h;
510 unsigned char *grid;
511 char *ret;
512 int i;
513
514 grid = snewn(w*h, unsigned char);
515 if (params->type == TYPE_RANDOM) {
516 pegs_generate(grid, w, h, rs);
517 } else {
518 int x, y, cx, cy, v;
519
520 for (y = 0; y < h; y++)
521 for (x = 0; x < w; x++) {
522 v = GRID_OBST; /* placate optimiser */
523 switch (params->type) {
524 case TYPE_CROSS:
525 cx = abs(x - w/2);
526 cy = abs(y - h/2);
527 if (cx == 0 && cy == 0)
528 v = GRID_HOLE;
529 else if (cx > 1 && cy > 1)
530 v = GRID_OBST;
531 else
532 v = GRID_PEG;
533 break;
534 case TYPE_OCTAGON:
535 cx = abs(x - w/2);
536 cy = abs(y - h/2);
537 if (cx + cy > 1 + max(w,h)/2)
538 v = GRID_OBST;
539 else
540 v = GRID_PEG;
541 break;
542 }
543 grid[y*w+x] = v;
544 }
545
546 if (params->type == TYPE_OCTAGON) {
547 /*
548 * The octagonal (European) solitaire layout is
549 * actually _insoluble_ with the starting hole at the
550 * centre. Here's a proof:
551 *
552 * Colour the squares of the board diagonally in
553 * stripes of three different colours, which I'll call
554 * A, B and C. So the board looks like this:
555 *
556 * A B C
557 * A B C A B
558 * A B C A B C A
559 * B C A B C A B
560 * C A B C A B C
561 * B C A B C
562 * A B C
563 *
564 * Suppose we keep running track of the number of pegs
565 * occuping each colour of square. This colouring has
566 * the property that any valid move whatsoever changes
567 * all three of those counts by one (two of them go
568 * down and one goes up), which means that the _parity_
569 * of every count flips on every move.
570 *
571 * If the centre square starts off unoccupied, then
572 * there are twelve pegs on each colour and all three
573 * counts start off even; therefore, after 35 moves all
574 * three counts would have to be odd, which isn't
575 * possible if there's only one peg left. []
576 *
577 * This proof works just as well if the starting hole
578 * is _any_ of the thirteen positions labelled B. Also,
579 * we can stripe the board in the opposite direction
580 * and rule out any square labelled B in that colouring
581 * as well. This leaves:
582 *
583 * Y n Y
584 * n n Y n n
585 * Y n n Y n n Y
586 * n Y Y n Y Y n
587 * Y n n Y n n Y
588 * n n Y n n
589 * Y n Y
590 *
591 * where the ns are squares we've proved insoluble, and
592 * the Ys are the ones remaining.
593 *
594 * That doesn't prove all those starting positions to
595 * be soluble, of course; they're merely the ones we
596 * _haven't_ proved to be impossible. Nevertheless, it
597 * turns out that they are all soluble, so when the
598 * user requests an Octagon board the simplest thing is
599 * to pick one of these at random.
600 *
601 * Rather than picking equiprobably from those twelve
602 * positions, we'll pick equiprobably from the three
603 * equivalence classes
604 */
605 switch (random_upto(rs, 3)) {
606 case 0:
607 /* Remove a random corner piece. */
608 {
609 int dx, dy;
610
611 dx = random_upto(rs, 2) * 2 - 1; /* +1 or -1 */
612 dy = random_upto(rs, 2) * 2 - 1; /* +1 or -1 */
613 if (random_upto(rs, 2))
614 dy *= 3;
615 else
616 dx *= 3;
617 grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
618 }
619 break;
620 case 1:
621 /* Remove a random piece two from the centre. */
622 {
623 int dx, dy;
624 dx = 2 * (random_upto(rs, 2) * 2 - 1);
625 if (random_upto(rs, 2))
626 dy = 0;
627 else
628 dy = dx, dx = 0;
629 grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
630 }
631 break;
632 default /* case 2 */:
633 /* Remove a random piece one from the centre. */
634 {
635 int dx, dy;
636 dx = random_upto(rs, 2) * 2 - 1;
637 if (random_upto(rs, 2))
638 dy = 0;
639 else
640 dy = dx, dx = 0;
641 grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
642 }
643 break;
644 }
645 }
646 }
647
648 /*
649 * Encode a game description which is simply a long list of P
650 * for peg, H for hole or O for obstacle.
651 */
652 ret = snewn(w*h+1, char);
653 for (i = 0; i < w*h; i++)
654 ret[i] = (grid[i] == GRID_PEG ? 'P' :
655 grid[i] == GRID_HOLE ? 'H' : 'O');
656 ret[w*h] = '\0';
657
658 sfree(grid);
659
660 return ret;
661}
662
663static char *validate_desc(const game_params *params, const char *desc)
664{
665 int len = params->w * params->h;
666
667 if (len != strlen(desc))
668 return "Game description is wrong length";
669 if (len != strspn(desc, "PHO"))
670 return "Invalid character in game description";
671
672 return NULL;
673}
674
675static game_state *new_game(midend *me, const game_params *params,
676 const char *desc)
677{
678 int w = params->w, h = params->h;
679 game_state *state = snew(game_state);
680 int i;
681
682 state->w = w;
683 state->h = h;
684 state->completed = 0;
685 state->grid = snewn(w*h, unsigned char);
686 for (i = 0; i < w*h; i++)
687 state->grid[i] = (desc[i] == 'P' ? GRID_PEG :
688 desc[i] == 'H' ? GRID_HOLE : GRID_OBST);
689
690 return state;
691}
692
693static game_state *dup_game(const game_state *state)
694{
695 int w = state->w, h = state->h;
696 game_state *ret = snew(game_state);
697
698 ret->w = state->w;
699 ret->h = state->h;
700 ret->completed = state->completed;
701 ret->grid = snewn(w*h, unsigned char);
702 memcpy(ret->grid, state->grid, w*h);
703
704 return ret;
705}
706
707static void free_game(game_state *state)
708{
709 sfree(state->grid);
710 sfree(state);
711}
712
713static char *solve_game(const game_state *state, const game_state *currstate,
714 const char *aux, char **error)
715{
716 return NULL;
717}
718
719static int game_can_format_as_text_now(const game_params *params)
720{
721 return TRUE;
722}
723
724static char *game_text_format(const game_state *state)
725{
726 int w = state->w, h = state->h;
727 int x, y;
728 char *ret;
729
730 ret = snewn((w+1)*h + 1, char);
731
732 for (y = 0; y < h; y++) {
733 for (x = 0; x < w; x++)
734 ret[y*(w+1)+x] = (state->grid[y*w+x] == GRID_HOLE ? '-' :
735 state->grid[y*w+x] == GRID_PEG ? '*' : ' ');
736 ret[y*(w+1)+w] = '\n';
737 }
738 ret[h*(w+1)] = '\0';
739
740 return ret;
741}
742
743struct game_ui {
744 int dragging; /* boolean: is a drag in progress? */
745 int sx, sy; /* grid coords of drag start cell */
746 int dx, dy; /* pixel coords of current drag posn */
747 int cur_x, cur_y, cur_visible, cur_jumping;
748};
749
750static game_ui *new_ui(const game_state *state)
751{
752 game_ui *ui = snew(game_ui);
753 int x, y, v;
754
755 ui->sx = ui->sy = ui->dx = ui->dy = 0;
756 ui->dragging = FALSE;
757 ui->cur_visible = ui->cur_jumping = 0;
758
759 /* make sure we start the cursor somewhere on the grid. */
760 for (x = 0; x < state->w; x++) {
761 for (y = 0; y < state->h; y++) {
762 v = state->grid[y*state->w+x];
763 if (v == GRID_PEG || v == GRID_HOLE) {
764 ui->cur_x = x; ui->cur_y = y;
765 goto found;
766 }
767 }
768 }
769 assert(!"new_ui found nowhere for cursor");
770found:
771
772 return ui;
773}
774
775static void free_ui(game_ui *ui)
776{
777 sfree(ui);
778}
779
780static char *encode_ui(const game_ui *ui)
781{
782 return NULL;
783}
784
785static void decode_ui(game_ui *ui, const char *encoding)
786{
787}
788
789static void game_changed_state(game_ui *ui, const game_state *oldstate,
790 const game_state *newstate)
791{
792 /*
793 * Cancel a drag, in case the source square has become
794 * unoccupied.
795 */
796 ui->dragging = FALSE;
797}
798
799#define PREFERRED_TILE_SIZE 33
800#define TILESIZE (ds->tilesize)
801#define BORDER (TILESIZE / 2)
802
803#define HIGHLIGHT_WIDTH (TILESIZE / 16)
804
805#define COORD(x) ( BORDER + (x) * TILESIZE )
806#define FROMCOORD(x) ( ((x) + TILESIZE - BORDER) / TILESIZE - 1 )
807
808struct game_drawstate {
809 int tilesize;
810 blitter *drag_background;
811 int dragging, dragx, dragy;
812 int w, h;
813 unsigned char *grid;
814 int started;
815 int bgcolour;
816};
817
818static char *interpret_move(const game_state *state, game_ui *ui,
819 const game_drawstate *ds,
820 int x, int y, int button)
821{
822 int w = state->w, h = state->h;
823 char buf[80];
824
825 if (button == LEFT_BUTTON) {
826 int tx, ty;
827
828 /*
829 * Left button down: we attempt to start a drag.
830 */
831
832 /*
833 * There certainly shouldn't be a current drag in progress,
834 * unless the midend failed to send us button events in
835 * order; it has a responsibility to always get that right,
836 * so we can legitimately punish it by failing an
837 * assertion.
838 */
839 assert(!ui->dragging);
840
841 tx = FROMCOORD(x);
842 ty = FROMCOORD(y);
843 if (tx >= 0 && tx < w && ty >= 0 && ty < h &&
844 state->grid[ty*w+tx] == GRID_PEG) {
845 ui->dragging = TRUE;
846 ui->sx = tx;
847 ui->sy = ty;
848 ui->dx = x;
849 ui->dy = y;
850 ui->cur_visible = ui->cur_jumping = 0;
851 return ""; /* ui modified */
852 }
853 } else if (button == LEFT_DRAG && ui->dragging) {
854 /*
855 * Mouse moved; just move the peg being dragged.
856 */
857 ui->dx = x;
858 ui->dy = y;
859 return ""; /* ui modified */
860 } else if (button == LEFT_RELEASE && ui->dragging) {
861 int tx, ty, dx, dy;
862
863 /*
864 * Button released. Identify the target square of the drag,
865 * see if it represents a valid move, and if so make it.
866 */
867 ui->dragging = FALSE; /* cancel the drag no matter what */
868 tx = FROMCOORD(x);
869 ty = FROMCOORD(y);
870 if (tx < 0 || tx >= w || ty < 0 || ty >= h)
871 return ""; /* target out of range */
872 dx = tx - ui->sx;
873 dy = ty - ui->sy;
874 if (max(abs(dx),abs(dy)) != 2 || min(abs(dx),abs(dy)) != 0)
875 return ""; /* move length was wrong */
876 dx /= 2;
877 dy /= 2;
878
879 if (state->grid[ty*w+tx] != GRID_HOLE ||
880 state->grid[(ty-dy)*w+(tx-dx)] != GRID_PEG ||
881 state->grid[ui->sy*w+ui->sx] != GRID_PEG)
882 return ""; /* grid contents were invalid */
883
884 /*
885 * We have a valid move. Encode it simply as source and
886 * destination coordinate pairs.
887 */
888 sprintf(buf, "%d,%d-%d,%d", ui->sx, ui->sy, tx, ty);
889 return dupstr(buf);
890 } else if (IS_CURSOR_MOVE(button)) {
891 if (!ui->cur_jumping) {
892 /* Not jumping; move cursor as usual, making sure we don't
893 * leave the gameboard (which may be an irregular shape) */
894 int cx = ui->cur_x, cy = ui->cur_y;
895 move_cursor(button, &cx, &cy, w, h, 0);
896 ui->cur_visible = 1;
897 if (state->grid[cy*w+cx] == GRID_HOLE ||
898 state->grid[cy*w+cx] == GRID_PEG) {
899 ui->cur_x = cx;
900 ui->cur_y = cy;
901 }
902 return "";
903 } else {
904 int dx, dy, mx, my, jx, jy;
905
906 /* We're jumping; if the requested direction has a hole, and
907 * there's a peg in the way, */
908 assert(state->grid[ui->cur_y*w+ui->cur_x] == GRID_PEG);
909 dx = (button == CURSOR_RIGHT) ? 1 : (button == CURSOR_LEFT) ? -1 : 0;
910 dy = (button == CURSOR_DOWN) ? 1 : (button == CURSOR_UP) ? -1 : 0;
911
912 mx = ui->cur_x+dx; my = ui->cur_y+dy;
913 jx = mx+dx; jy = my+dy;
914
915 ui->cur_jumping = 0; /* reset, whatever. */
916 if (jx >= 0 && jy >= 0 && jx < w && jy < h &&
917 state->grid[my*w+mx] == GRID_PEG &&
918 state->grid[jy*w+jx] == GRID_HOLE) {
919 /* Move cursor to the jumped-to location (this felt more
920 * natural while playtesting) */
921 sprintf(buf, "%d,%d-%d,%d", ui->cur_x, ui->cur_y, jx, jy);
922 ui->cur_x = jx; ui->cur_y = jy;
923 return dupstr(buf);
924 }
925 return "";
926 }
927 } else if (IS_CURSOR_SELECT(button)) {
928 if (!ui->cur_visible) {
929 ui->cur_visible = 1;
930 return "";
931 }
932 if (ui->cur_jumping) {
933 ui->cur_jumping = 0;
934 return "";
935 }
936 if (state->grid[ui->cur_y*w+ui->cur_x] == GRID_PEG) {
937 /* cursor is on peg: next arrow-move wil jump. */
938 ui->cur_jumping = 1;
939 return "";
940 }
941 return NULL;
942 }
943
944 return NULL;
945}
946
947static game_state *execute_move(const game_state *state, const char *move)
948{
949 int w = state->w, h = state->h;
950 int sx, sy, tx, ty;
951 game_state *ret;
952
953 if (sscanf(move, "%d,%d-%d,%d", &sx, &sy, &tx, &ty) == 4) {
954 int mx, my, dx, dy;
955
956 if (sx < 0 || sx >= w || sy < 0 || sy >= h)
957 return NULL; /* source out of range */
958 if (tx < 0 || tx >= w || ty < 0 || ty >= h)
959 return NULL; /* target out of range */
960
961 dx = tx - sx;
962 dy = ty - sy;
963 if (max(abs(dx),abs(dy)) != 2 || min(abs(dx),abs(dy)) != 0)
964 return NULL; /* move length was wrong */
965 mx = sx + dx/2;
966 my = sy + dy/2;
967
968 if (state->grid[sy*w+sx] != GRID_PEG ||
969 state->grid[my*w+mx] != GRID_PEG ||
970 state->grid[ty*w+tx] != GRID_HOLE)
971 return NULL; /* grid contents were invalid */
972
973 ret = dup_game(state);
974 ret->grid[sy*w+sx] = GRID_HOLE;
975 ret->grid[my*w+mx] = GRID_HOLE;
976 ret->grid[ty*w+tx] = GRID_PEG;
977
978 /*
979 * Opinion varies on whether getting to a single peg counts as
980 * completing the game, or whether that peg has to be at a
981 * specific location (central in the classic cross game, for
982 * instance). For now we take the former, rather lax position.
983 */
984 if (!ret->completed) {
985 int count = 0, i;
986 for (i = 0; i < w*h; i++)
987 if (ret->grid[i] == GRID_PEG)
988 count++;
989 if (count == 1)
990 ret->completed = 1;
991 }
992
993 return ret;
994 }
995 return NULL;
996}
997
998/* ----------------------------------------------------------------------
999 * Drawing routines.
1000 */
1001
1002static void game_compute_size(const game_params *params, int tilesize,
1003 int *x, int *y)
1004{
1005 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1006 struct { int tilesize; } ads, *ds = &ads;
1007 ads.tilesize = tilesize;
1008
1009 *x = TILESIZE * params->w + 2 * BORDER;
1010 *y = TILESIZE * params->h + 2 * BORDER;
1011}
1012
1013static void game_set_size(drawing *dr, game_drawstate *ds,
1014 const game_params *params, int tilesize)
1015{
1016 ds->tilesize = tilesize;
1017
1018 assert(TILESIZE > 0);
1019
1020 assert(!ds->drag_background); /* set_size is never called twice */
1021 ds->drag_background = blitter_new(dr, TILESIZE, TILESIZE);
1022}
1023
1024static float *game_colours(frontend *fe, int *ncolours)
1025{
1026 float *ret = snewn(3 * NCOLOURS, float);
1027
1028 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1029
1030 ret[COL_PEG * 3 + 0] = 0.0F;
1031 ret[COL_PEG * 3 + 1] = 0.0F;
1032 ret[COL_PEG * 3 + 2] = 1.0F;
1033
1034 ret[COL_CURSOR * 3 + 0] = 0.5F;
1035 ret[COL_CURSOR * 3 + 1] = 0.5F;
1036 ret[COL_CURSOR * 3 + 2] = 1.0F;
1037
1038 *ncolours = NCOLOURS;
1039 return ret;
1040}
1041
1042static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
1043{
1044 int w = state->w, h = state->h;
1045 struct game_drawstate *ds = snew(struct game_drawstate);
1046
1047 ds->tilesize = 0; /* not decided yet */
1048
1049 /* We can't allocate the blitter rectangle for the drag background
1050 * until we know what size to make it. */
1051 ds->drag_background = NULL;
1052 ds->dragging = FALSE;
1053
1054 ds->w = w;
1055 ds->h = h;
1056 ds->grid = snewn(w*h, unsigned char);
1057 memset(ds->grid, 255, w*h);
1058
1059 ds->started = FALSE;
1060 ds->bgcolour = -1;
1061
1062 return ds;
1063}
1064
1065static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1066{
1067 if (ds->drag_background)
1068 blitter_free(dr, ds->drag_background);
1069 sfree(ds->grid);
1070 sfree(ds);
1071}
1072
1073static void draw_tile(drawing *dr, game_drawstate *ds,
1074 int x, int y, int v, int bgcolour)
1075{
1076 int cursor = 0, jumping = 0, bg;
1077
1078 if (bgcolour >= 0) {
1079 draw_rect(dr, x, y, TILESIZE, TILESIZE, bgcolour);
1080 }
1081 if (v >= GRID_JUMPING) {
1082 jumping = 1; v -= GRID_JUMPING;
1083 }
1084 if (v >= GRID_CURSOR) {
1085 cursor = 1; v -= GRID_CURSOR;
1086 }
1087
1088 if (v == GRID_HOLE) {
1089 bg = cursor ? COL_HIGHLIGHT : COL_LOWLIGHT;
1090 assert(!jumping); /* can't jump from a hole! */
1091 draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/4,
1092 bg, bg);
1093 } else if (v == GRID_PEG) {
1094 bg = (cursor || jumping) ? COL_CURSOR : COL_PEG;
1095 draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/3,
1096 bg, bg);
1097 bg = (!cursor || jumping) ? COL_PEG : COL_CURSOR;
1098 draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/4,
1099 bg, bg);
1100 }
1101
1102 draw_update(dr, x, y, TILESIZE, TILESIZE);
1103}
1104
1105static void game_redraw(drawing *dr, game_drawstate *ds,
1106 const game_state *oldstate, const game_state *state,
1107 int dir, const game_ui *ui,
1108 float animtime, float flashtime)
1109{
1110 int w = state->w, h = state->h;
1111 int x, y;
1112 int bgcolour;
1113
1114 if (flashtime > 0) {
1115 int frame = (int)(flashtime / FLASH_FRAME);
1116 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
1117 } else
1118 bgcolour = COL_BACKGROUND;
1119
1120 /*
1121 * Erase the sprite currently being dragged, if any.
1122 */
1123 if (ds->dragging) {
1124 assert(ds->drag_background);
1125 blitter_load(dr, ds->drag_background, ds->dragx, ds->dragy);
1126 draw_update(dr, ds->dragx, ds->dragy, TILESIZE, TILESIZE);
1127 ds->dragging = FALSE;
1128 }
1129
1130 if (!ds->started) {
1131 draw_rect(dr, 0, 0,
1132 TILESIZE * state->w + 2 * BORDER,
1133 TILESIZE * state->h + 2 * BORDER, COL_BACKGROUND);
1134
1135 /*
1136 * Draw relief marks around all the squares that aren't
1137 * GRID_OBST.
1138 */
1139 for (y = 0; y < h; y++)
1140 for (x = 0; x < w; x++)
1141 if (state->grid[y*w+x] != GRID_OBST) {
1142 /*
1143 * First pass: draw the full relief square.
1144 */
1145 int coords[6];
1146 coords[0] = COORD(x+1) + HIGHLIGHT_WIDTH - 1;
1147 coords[1] = COORD(y) - HIGHLIGHT_WIDTH;
1148 coords[2] = COORD(x) - HIGHLIGHT_WIDTH;
1149 coords[3] = COORD(y+1) + HIGHLIGHT_WIDTH - 1;
1150 coords[4] = COORD(x) - HIGHLIGHT_WIDTH;
1151 coords[5] = COORD(y) - HIGHLIGHT_WIDTH;
1152 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1153 coords[4] = COORD(x+1) + HIGHLIGHT_WIDTH - 1;
1154 coords[5] = COORD(y+1) + HIGHLIGHT_WIDTH - 1;
1155 draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
1156 }
1157 for (y = 0; y < h; y++)
1158 for (x = 0; x < w; x++)
1159 if (state->grid[y*w+x] != GRID_OBST) {
1160 /*
1161 * Second pass: draw everything but the two
1162 * diagonal corners.
1163 */
1164 draw_rect(dr, COORD(x) - HIGHLIGHT_WIDTH,
1165 COORD(y) - HIGHLIGHT_WIDTH,
1166 TILESIZE + HIGHLIGHT_WIDTH,
1167 TILESIZE + HIGHLIGHT_WIDTH, COL_HIGHLIGHT);
1168 draw_rect(dr, COORD(x),
1169 COORD(y),
1170 TILESIZE + HIGHLIGHT_WIDTH,
1171 TILESIZE + HIGHLIGHT_WIDTH, COL_LOWLIGHT);
1172 }
1173 for (y = 0; y < h; y++)
1174 for (x = 0; x < w; x++)
1175 if (state->grid[y*w+x] != GRID_OBST) {
1176 /*
1177 * Third pass: draw a trapezium on each edge.
1178 */
1179 int coords[8];
1180 int dx, dy, s, sn, c;
1181
1182 for (dx = 0; dx < 2; dx++) {
1183 dy = 1 - dx;
1184 for (s = 0; s < 2; s++) {
1185 sn = 2*s - 1;
1186 c = s ? COL_LOWLIGHT : COL_HIGHLIGHT;
1187
1188 coords[0] = COORD(x) + (s*dx)*(TILESIZE-1);
1189 coords[1] = COORD(y) + (s*dy)*(TILESIZE-1);
1190 coords[2] = COORD(x) + (s*dx+dy)*(TILESIZE-1);
1191 coords[3] = COORD(y) + (s*dy+dx)*(TILESIZE-1);
1192 coords[4] = coords[2] - HIGHLIGHT_WIDTH * (dy-sn*dx);
1193 coords[5] = coords[3] - HIGHLIGHT_WIDTH * (dx-sn*dy);
1194 coords[6] = coords[0] + HIGHLIGHT_WIDTH * (dy+sn*dx);
1195 coords[7] = coords[1] + HIGHLIGHT_WIDTH * (dx+sn*dy);
1196 draw_polygon(dr, coords, 4, c, c);
1197 }
1198 }
1199 }
1200 for (y = 0; y < h; y++)
1201 for (x = 0; x < w; x++)
1202 if (state->grid[y*w+x] != GRID_OBST) {
1203 /*
1204 * Second pass: draw everything but the two
1205 * diagonal corners.
1206 */
1207 draw_rect(dr, COORD(x),
1208 COORD(y),
1209 TILESIZE,
1210 TILESIZE, COL_BACKGROUND);
1211 }
1212
1213 ds->started = TRUE;
1214
1215 draw_update(dr, 0, 0,
1216 TILESIZE * state->w + 2 * BORDER,
1217 TILESIZE * state->h + 2 * BORDER);
1218 }
1219
1220 /*
1221 * Loop over the grid redrawing anything that looks as if it
1222 * needs it.
1223 */
1224 for (y = 0; y < h; y++)
1225 for (x = 0; x < w; x++) {
1226 int v;
1227
1228 v = state->grid[y*w+x];
1229 /*
1230 * Blank the source of a drag so it looks as if the
1231 * user picked the peg up physically.
1232 */
1233 if (ui->dragging && ui->sx == x && ui->sy == y && v == GRID_PEG)
1234 v = GRID_HOLE;
1235
1236 if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y)
1237 v += ui->cur_jumping ? GRID_JUMPING : GRID_CURSOR;
1238
1239 if (v != GRID_OBST &&
1240 (bgcolour != ds->bgcolour || /* always redraw when flashing */
1241 v != ds->grid[y*w+x])) {
1242 draw_tile(dr, ds, COORD(x), COORD(y), v, bgcolour);
1243 ds->grid[y*w+x] = v;
1244 }
1245 }
1246
1247 /*
1248 * Draw the dragging sprite if any.
1249 */
1250 if (ui->dragging) {
1251 ds->dragging = TRUE;
1252 ds->dragx = ui->dx - TILESIZE/2;
1253 ds->dragy = ui->dy - TILESIZE/2;
1254 blitter_save(dr, ds->drag_background, ds->dragx, ds->dragy);
1255 draw_tile(dr, ds, ds->dragx, ds->dragy, GRID_PEG, -1);
1256 }
1257
1258 ds->bgcolour = bgcolour;
1259}
1260
1261static float game_anim_length(const game_state *oldstate,
1262 const game_state *newstate, int dir, game_ui *ui)
1263{
1264 return 0.0F;
1265}
1266
1267static float game_flash_length(const game_state *oldstate,
1268 const game_state *newstate, int dir, game_ui *ui)
1269{
1270 if (!oldstate->completed && newstate->completed)
1271 return 2 * FLASH_FRAME;
1272 else
1273 return 0.0F;
1274}
1275
1276static int game_status(const game_state *state)
1277{
1278 /*
1279 * Dead-end situations are assumed to be rescuable by Undo, so we
1280 * don't bother to identify them and return -1.
1281 */
1282 return state->completed ? +1 : 0;
1283}
1284
1285static int game_timing_state(const game_state *state, game_ui *ui)
1286{
1287 return TRUE;
1288}
1289
1290static void game_print_size(const game_params *params, float *x, float *y)
1291{
1292}
1293
1294static void game_print(drawing *dr, const game_state *state, int tilesize)
1295{
1296}
1297
1298#ifdef COMBINED
1299#define thegame pegs
1300#endif
1301
1302const struct game thegame = {
1303 "Pegs", "games.pegs", "pegs",
1304 default_params,
1305 game_fetch_preset, NULL,
1306 decode_params,
1307 encode_params,
1308 free_params,
1309 dup_params,
1310 TRUE, game_configure, custom_params,
1311 validate_params,
1312 new_game_desc,
1313 validate_desc,
1314 new_game,
1315 dup_game,
1316 free_game,
1317 FALSE, solve_game,
1318 TRUE, game_can_format_as_text_now, game_text_format,
1319 new_ui,
1320 free_ui,
1321 encode_ui,
1322 decode_ui,
1323 game_changed_state,
1324 interpret_move,
1325 execute_move,
1326 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1327 game_colours,
1328 game_new_drawstate,
1329 game_free_drawstate,
1330 game_redraw,
1331 game_anim_length,
1332 game_flash_length,
1333 game_status,
1334 FALSE, FALSE, game_print_size, game_print,
1335 FALSE, /* wants_statusbar */
1336 FALSE, game_timing_state,
1337 0, /* flags */
1338};
1339
1340/* vim: set shiftwidth=4 tabstop=8: */