summaryrefslogtreecommitdiff
path: root/apps/plugins/puzzles/src/misc.c
diff options
context:
space:
mode:
Diffstat (limited to 'apps/plugins/puzzles/src/misc.c')
-rw-r--r--apps/plugins/puzzles/src/misc.c289
1 files changed, 261 insertions, 28 deletions
diff --git a/apps/plugins/puzzles/src/misc.c b/apps/plugins/puzzles/src/misc.c
index ed31acbbe4..8e96d67039 100644
--- a/apps/plugins/puzzles/src/misc.c
+++ b/apps/plugins/puzzles/src/misc.c
@@ -3,13 +3,21 @@
3 */ 3 */
4 4
5#include <assert.h> 5#include <assert.h>
6#include <ctype.h>
7#ifdef NO_TGMATH_H
8# include <math.h>
9#else
10# include <tgmath.h>
11#endif
6#include <stdlib.h> 12#include <stdlib.h>
7#include <string.h> 13#include <string.h>
8#include <stdio.h> 14#include <stdio.h>
9 15
10#include "puzzles.h" 16#include "puzzles.h"
11 17
12char UI_UPDATE[] = ""; 18char MOVE_UI_UPDATE[] = "";
19char MOVE_NO_EFFECT[] = "";
20char MOVE_UNUSED[] = "";
13 21
14void free_cfg(config_item *cfg) 22void free_cfg(config_item *cfg)
15{ 23{
@@ -197,30 +205,85 @@ char *fgetline(FILE *fp)
197 return ret; 205 return ret;
198} 206}
199 207
208int getenv_bool(const char *name, int dflt)
209{
210 char *env = getenv(name);
211 if (env == NULL) return dflt;
212 if (strchr("yYtT", env[0])) return true;
213 return false;
214}
215
216/* Utility functions for colour manipulation. */
217
218static float colour_distance(const float a[3], const float b[3])
219{
220 return (float)sqrt((a[0]-b[0]) * (a[0]-b[0]) +
221 (a[1]-b[1]) * (a[1]-b[1]) +
222 (a[2]-b[2]) * (a[2]-b[2]));
223}
224
225void colour_mix(const float src1[3], const float src2[3], float p, float dst[3])
226{
227 int i;
228 for (i = 0; i < 3; i++)
229 dst[i] = src1[i] * (1.0F - p) + src2[i] * p;
230}
231
200void game_mkhighlight_specific(frontend *fe, float *ret, 232void game_mkhighlight_specific(frontend *fe, float *ret,
201 int background, int highlight, int lowlight) 233 int background, int highlight, int lowlight)
202{ 234{
203 float max; 235 static const float black[3] = { 0.0F, 0.0F, 0.0F };
236 static const float white[3] = { 1.0F, 1.0F, 1.0F };
237 float db, dw;
204 int i; 238 int i;
205
206 /* 239 /*
207 * Drop the background colour so that the highlight is 240 * New geometric highlight-generation algorithm: Draw a line from
208 * noticeably brighter than it while still being under 1. 241 * the base colour to white. The point K distance along this line
242 * from the base colour is the highlight colour. Similarly, draw
243 * a line from the base colour to black. The point on this line
244 * at a distance K from the base colour is the shadow. If either
245 * of these colours is imaginary (for reasonable K at most one
246 * will be), _extrapolate_ the base colour along the same line
247 * until it's a distance K from white (or black) and start again
248 * with that as the base colour.
249 *
250 * This preserves the hue of the base colour, ensures that of the
251 * three the base colour is the most saturated, and only ever
252 * flattens the highlight and shadow to pure white or pure black.
253 *
254 * K must be at most sqrt(3)/2, or mid grey would be too close to
255 * both white and black. Here K is set to sqrt(3)/6 so that this
256 * code produces the same results as the former code in the common
257 * case where the background is grey and the highlight saturates
258 * to white.
209 */ 259 */
210 max = ret[background*3]; 260 const float k = sqrt(3)/6.0F;
211 for (i = 1; i < 3; i++) 261 if (lowlight >= 0) {
212 if (ret[background*3+i] > max) 262 db = colour_distance(&ret[background*3], black);
213 max = ret[background*3+i]; 263 if (db < k) {
214 if (max * 1.2F > 1.0F) { 264 for (i = 0; i < 3; i++) ret[lowlight*3+i] = black[i];
215 for (i = 0; i < 3; i++) 265 if (db == 0.0F)
216 ret[background*3+i] /= (max * 1.2F); 266 colour_mix(black, white, k/sqrt(3), &ret[background*3]);
267 else
268 colour_mix(black, &ret[background*3], k/db, &ret[background*3]);
269 } else {
270 colour_mix(&ret[background*3], black, k/db, &ret[lowlight*3]);
271 }
217 } 272 }
218 273 if (highlight >= 0) {
219 for (i = 0; i < 3; i++) { 274 dw = colour_distance(&ret[background*3], white);
220 if (highlight >= 0) 275 if (dw < k) {
221 ret[highlight * 3 + i] = ret[background * 3 + i] * 1.2F; 276 for (i = 0; i < 3; i++) ret[highlight*3+i] = white[i];
222 if (lowlight >= 0) 277 if (dw == 0.0F)
223 ret[lowlight * 3 + i] = ret[background * 3 + i] * 0.8F; 278 colour_mix(white, black, k/sqrt(3), &ret[background*3]);
279 else
280 colour_mix(white, &ret[background*3], k/dw, &ret[background*3]);
281 /* Background has changed; recalculate lowlight. */
282 if (lowlight >= 0)
283 colour_mix(&ret[background*3], black, k/db, &ret[lowlight*3]);
284 } else {
285 colour_mix(&ret[background*3], white, k/dw, &ret[highlight*3]);
286 }
224 } 287 }
225} 288}
226 289
@@ -231,7 +294,7 @@ void game_mkhighlight(frontend *fe, float *ret,
231 game_mkhighlight_specific(fe, ret, background, highlight, lowlight); 294 game_mkhighlight_specific(fe, ret, background, highlight, lowlight);
232} 295}
233 296
234static void swap_regions(void *av, void *bv, int size) 297void swap_regions(void *av, void *bv, size_t size)
235{ 298{
236 char tmpbuf[512]; 299 char tmpbuf[512];
237 char *a = av, *b = bv; 300 char *a = av, *b = bv;
@@ -288,15 +351,27 @@ void draw_rect_corners(drawing *dr, int cx, int cy, int r, int col)
288 draw_line(dr, cx + r, cy + r, cx + r/2, cy + r, col); 351 draw_line(dr, cx + r, cy + r, cx + r/2, cy + r, col);
289} 352}
290 353
291void move_cursor(int button, int *x, int *y, int maxw, int maxh, bool wrap) 354int compare_integers(const void *av, const void *bv) {
355 const int *a = (const int *)av;
356 const int *b = (const int *)bv;
357 if (*a < *b)
358 return -1;
359 else if (*a > *b)
360 return +1;
361 else
362 return 0;
363}
364
365char *move_cursor(int button, int *x, int *y, int maxw, int maxh, bool wrap,
366 bool *visible)
292{ 367{
293 int dx = 0, dy = 0; 368 int dx = 0, dy = 0, ox = *x, oy = *y;
294 switch (button) { 369 switch (button) {
295 case CURSOR_UP: dy = -1; break; 370 case CURSOR_UP: dy = -1; break;
296 case CURSOR_DOWN: dy = 1; break; 371 case CURSOR_DOWN: dy = 1; break;
297 case CURSOR_RIGHT: dx = 1; break; 372 case CURSOR_RIGHT: dx = 1; break;
298 case CURSOR_LEFT: dx = -1; break; 373 case CURSOR_LEFT: dx = -1; break;
299 default: return; 374 default: return MOVE_UNUSED;
300 } 375 }
301 if (wrap) { 376 if (wrap) {
302 *x = (*x + dx + maxw) % maxw; 377 *x = (*x + dx + maxw) % maxw;
@@ -305,6 +380,13 @@ void move_cursor(int button, int *x, int *y, int maxw, int maxh, bool wrap)
305 *x = min(max(*x+dx, 0), maxw - 1); 380 *x = min(max(*x+dx, 0), maxw - 1);
306 *y = min(max(*y+dy, 0), maxh - 1); 381 *y = min(max(*y+dy, 0), maxh - 1);
307 } 382 }
383 if (visible != NULL && !*visible) {
384 *visible = true;
385 return MOVE_UI_UPDATE;
386 }
387 if (*x != ox || *y != oy)
388 return MOVE_UI_UPDATE;
389 return MOVE_NO_EFFECT;
308} 390}
309 391
310/* Used in netslide.c and sixteen.c for cursor movement around edge. */ 392/* Used in netslide.c and sixteen.c for cursor movement around edge. */
@@ -402,12 +484,6 @@ void copy_left_justified(char *buf, size_t sz, const char *str)
402 buf[sz - 1] = 0; 484 buf[sz - 1] = 0;
403} 485}
404 486
405/* another kludge for platforms without %g support in *printf() */
406int ftoa(char *buf, float f)
407{
408 return sprintf(buf, "%d.%06d", (int)f, abs((int)((f - (int)f)*1e6)));
409}
410
411/* Returns a dynamically allocated label for a generic button. 487/* Returns a dynamically allocated label for a generic button.
412 * Game-specific buttons should go into the `label' field of key_label 488 * Game-specific buttons should go into the `label' field of key_label
413 * instead. */ 489 * instead. */
@@ -446,4 +522,161 @@ char *button2label(int button)
446 return NULL; 522 return NULL;
447} 523}
448 524
525char *make_prefs_path(const char *dir, const char *sep,
526 const game *game, const char *suffix)
527{
528 size_t dirlen = strlen(dir);
529 size_t seplen = strlen(sep);
530 size_t gamelen = strlen(game->name);
531 size_t suffixlen = strlen(suffix);
532 char *path, *p;
533 const char *q;
534
535 if (!dir || !sep || !game || !suffix)
536 return NULL;
537
538 path = snewn(dirlen + seplen + gamelen + suffixlen + 1, char);
539 p = path;
540
541 memcpy(p, dir, dirlen);
542 p += dirlen;
543
544 memcpy(p, sep, seplen);
545 p += seplen;
546
547 for (q = game->name; *q; q++)
548 if (*q != ' ')
549 *p++ = tolower((unsigned char)*q);
550
551 memcpy(p, suffix, suffixlen);
552 p += suffixlen;
553
554 *p = '\0';
555 return path;
556}
557
558/*
559 * Calculate the nearest integer to n*sqrt(k), via a bitwise algorithm
560 * that avoids floating point.
561 *
562 * (It would probably be OK in practice to use floating point, but I
563 * felt like overengineering it for fun. With FP, there's at least a
564 * theoretical risk of rounding the wrong way, due to the three
565 * successive roundings involved - rounding sqrt(k), rounding its
566 * product with n, and then rounding to the nearest integer. This
567 * approach avoids that: it's exact.)
568 */
569int n_times_root_k(int n_signed, int k)
570{
571 unsigned x, r, m;
572 int sign = n_signed < 0 ? -1 : +1;
573 unsigned n = n_signed * sign;
574 unsigned bitpos;
575
576 /*
577 * Method:
578 *
579 * We transform m gradually from zero into n, by multiplying it by
580 * 2 in each step and optionally adding 1, so that it's always
581 * floor(n/2^something).
582 *
583 * At the start of each step, x is the largest integer less than
584 * or equal to m*sqrt(k). We transform m to 2m+bit, and therefore
585 * we must transform x to 2x+something to match. The 'something'
586 * we add to 2x is at most floor(sqrt(k))+2. (Worst case is if m
587 * sqrt(k) was equal to x + 1-eps for some tiny eps, and then the
588 * incoming bit of m is 1, so that (2m+1)sqrt(k) =
589 * 2x+2+sqrt(k)-2eps.)
590 *
591 * To compute this, we also track the residual value r such that
592 * x^2+r = km^2.
593 *
594 * The algorithm below is very similar to the usual approach for
595 * taking the square root of an integer in binary. The wrinkle is
596 * that we have an integer multiplier, i.e. we're computing
597 * n*sqrt(k) rather than just sqrt(k). Of course in principle we
598 * could just take sqrt(n^2k), but we'd need an integer twice the
599 * width to hold n^2. Pulling out n and treating it specially
600 * makes overflow less likely.
601 */
602
603 x = r = m = 0;
604
605 for (bitpos = UINT_MAX & ~(UINT_MAX >> 1); bitpos; bitpos >>= 1) {
606 unsigned a, b = (n & bitpos) ? 1 : 0;
607
608 /*
609 * Check invariants. We expect that x^2 + r = km^2 (i.e. our
610 * residual term is correct), and also that r < 2x+1 (because
611 * if not, then we could replace x with x+1 and still get a
612 * value that made r non-negative, i.e. x would not be the
613 * _largest_ integer less than m sqrt(k)).
614 */
615 assert(x*x + r == k*m*m);
616 assert(r < 2*x+1);
617
618 /*
619 * We're going to replace m with 2m+b, and x with 2x+a for
620 * some a we haven't decided on yet.
621 *
622 * The new value of the residual will therefore be
623 *
624 * k (2m+b)^2 - (2x+a)^2
625 * = (4km^2 + 4kmb + kb^2) - (4x^2 + 4xa + a^2)
626 * = 4 (km^2 - x^2) + 4kmb + kb^2 - 4xa - a^2
627 * = 4r + 4kmb + kb^2 - 4xa - a^2 (because r = km^2 - x^2)
628 * = 4r + (4m + 1)kb - 4xa - a^2 (b is 0 or 1, so b = b^2)
629 */
630 for (a = 0;; a++) {
631 /* If we made this routine handle square roots of numbers
632 * significantly bigger than 3 or 5 then it would be
633 * sensible to make this a binary search. Here, it hardly
634 * seems important. */
635 unsigned pos = 4*r + k*b*(4*m + 1);
636 unsigned neg = 4*a*x + a*a;
637 if (pos < neg)
638 break; /* this value of a is too big */
639 }
640
641 /* The above loop will have terminated with a one too big. So
642 * now decrementing a will give us the right value to add. */
643 a--;
644
645 r = 4*r + b*k*(4*m + 1) - (4*a*x + a*a);
646 m = 2*m+b;
647 x = 2*x+a;
648 }
649
650 /*
651 * Finally, round to the nearest integer. At present, x is the
652 * largest integer that is _at most_ m sqrt(k). But we want the
653 * _nearest_ integer, whether that's rounded up or down. So check
654 * whether (x + 1/2) is still less than m sqrt(k), i.e. whether
655 * (x + 1/2)^2 < km^2; if it is, then we increment x.
656 *
657 * We have km^2 - (x + 1/2)^2 = km^2 - x^2 - x - 1/4
658 * = r - x - 1/4
659 *
660 * and since r and x are integers, this is greater than 0 if and
661 * only if r > x.
662 *
663 * (There's no need to worry about tie-breaking exact halfway
664 * rounding cases. sqrt(k) is irrational, so none such exist.)
665 */
666 if (r > x)
667 x++;
668
669 /*
670 * Put the sign back on, and convert back from unsigned to int.
671 */
672 if (sign == +1) {
673 return x;
674 } else {
675 /* Be a little careful to avoid compilers deciding I've just
676 * perpetrated signed-integer overflow. This should optimise
677 * down to no actual code. */
678 return INT_MIN + (int)(-x - (unsigned)INT_MIN);
679 }
680}
681
449/* vim: set shiftwidth=4 tabstop=8: */ 682/* vim: set shiftwidth=4 tabstop=8: */