summaryrefslogtreecommitdiff
path: root/apps/plugins/lua/lopcodes.h
diff options
context:
space:
mode:
Diffstat (limited to 'apps/plugins/lua/lopcodes.h')
-rw-r--r--apps/plugins/lua/lopcodes.h106
1 files changed, 43 insertions, 63 deletions
diff --git a/apps/plugins/lua/lopcodes.h b/apps/plugins/lua/lopcodes.h
index 51f5791545..e1aed0f637 100644
--- a/apps/plugins/lua/lopcodes.h
+++ b/apps/plugins/lua/lopcodes.h
@@ -1,5 +1,5 @@
1/* 1/*
2** $Id: lopcodes.h,v 1.142.1.1 2013/04/12 18:48:47 roberto Exp $ 2** $Id$
3** Opcodes for Lua virtual machine 3** Opcodes for Lua virtual machine
4** See Copyright Notice in lua.h 4** See Copyright Notice in lua.h
5*/ 5*/
@@ -17,7 +17,6 @@
17 `A' : 8 bits 17 `A' : 8 bits
18 `B' : 9 bits 18 `B' : 9 bits
19 `C' : 9 bits 19 `C' : 9 bits
20 'Ax' : 26 bits ('A', 'B', and 'C' together)
21 `Bx' : 18 bits (`B' and `C' together) 20 `Bx' : 18 bits (`B' and `C' together)
22 `sBx' : signed Bx 21 `sBx' : signed Bx
23 22
@@ -29,7 +28,7 @@
29===========================================================================*/ 28===========================================================================*/
30 29
31 30
32enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ 31enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */
33 32
34 33
35/* 34/*
@@ -39,7 +38,6 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
39#define SIZE_B 9 38#define SIZE_B 9
40#define SIZE_Bx (SIZE_C + SIZE_B) 39#define SIZE_Bx (SIZE_C + SIZE_B)
41#define SIZE_A 8 40#define SIZE_A 8
42#define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A)
43 41
44#define SIZE_OP 6 42#define SIZE_OP 6
45 43
@@ -48,7 +46,6 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
48#define POS_C (POS_A + SIZE_A) 46#define POS_C (POS_A + SIZE_A)
49#define POS_B (POS_C + SIZE_C) 47#define POS_B (POS_C + SIZE_C)
50#define POS_Bx POS_C 48#define POS_Bx POS_C
51#define POS_Ax POS_A
52 49
53 50
54/* 51/*
@@ -64,12 +61,6 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
64#define MAXARG_sBx MAX_INT 61#define MAXARG_sBx MAX_INT
65#endif 62#endif
66 63
67#if SIZE_Ax < LUAI_BITSINT-1
68#define MAXARG_Ax ((1<<SIZE_Ax)-1)
69#else
70#define MAXARG_Ax MAX_INT
71#endif
72
73 64
74#define MAXARG_A ((1<<SIZE_A)-1) 65#define MAXARG_A ((1<<SIZE_A)-1)
75#define MAXARG_B ((1<<SIZE_B)-1) 66#define MAXARG_B ((1<<SIZE_B)-1)
@@ -77,7 +68,7 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
77 68
78 69
79/* creates a mask with `n' 1 bits at position `p' */ 70/* creates a mask with `n' 1 bits at position `p' */
80#define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) 71#define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p)
81 72
82/* creates a mask with `n' 0 bits at position `p' */ 73/* creates a mask with `n' 0 bits at position `p' */
83#define MASK0(n,p) (~MASK1(n,p)) 74#define MASK0(n,p) (~MASK1(n,p))
@@ -90,24 +81,21 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
90#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ 81#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
91 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) 82 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
92 83
93#define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0))) 84#define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
94#define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ 85#define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
95 ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) 86 ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
96 87
97#define GETARG_A(i) getarg(i, POS_A, SIZE_A) 88#define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
98#define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) 89#define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
90 ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
99 91
100#define GETARG_B(i) getarg(i, POS_B, SIZE_B) 92#define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
101#define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) 93#define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
94 ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
102 95
103#define GETARG_C(i) getarg(i, POS_C, SIZE_C) 96#define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
104#define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) 97#define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
105 98 ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
106#define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx)
107#define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
108
109#define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax)
110#define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
111 99
112#define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) 100#define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
113#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) 101#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
@@ -122,9 +110,6 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
122 | (cast(Instruction, a)<<POS_A) \ 110 | (cast(Instruction, a)<<POS_A) \
123 | (cast(Instruction, bc)<<POS_Bx)) 111 | (cast(Instruction, bc)<<POS_Bx))
124 112
125#define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
126 | (cast(Instruction, a)<<POS_Ax))
127
128 113
129/* 114/*
130** Macros to operate RK indices 115** Macros to operate RK indices
@@ -168,15 +153,14 @@ name args description
168------------------------------------------------------------------------*/ 153------------------------------------------------------------------------*/
169OP_MOVE,/* A B R(A) := R(B) */ 154OP_MOVE,/* A B R(A) := R(B) */
170OP_LOADK,/* A Bx R(A) := Kst(Bx) */ 155OP_LOADK,/* A Bx R(A) := Kst(Bx) */
171OP_LOADKX,/* A R(A) := Kst(extra arg) */
172OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ 156OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
173OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */ 157OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */
174OP_GETUPVAL,/* A B R(A) := UpValue[B] */ 158OP_GETUPVAL,/* A B R(A) := UpValue[B] */
175 159
176OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */ 160OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */
177OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ 161OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
178 162
179OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */ 163OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */
180OP_SETUPVAL,/* A B UpValue[B] := R(A) */ 164OP_SETUPVAL,/* A B UpValue[B] := R(A) */
181OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ 165OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
182 166
@@ -196,13 +180,14 @@ OP_LEN,/* A B R(A) := length of R(B) */
196 180
197OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ 181OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
198 182
199OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A) + 1 */ 183OP_JMP,/* sBx pc+=sBx */
184
200OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ 185OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
201OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ 186OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
202OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ 187OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
203 188
204OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ 189OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
205OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ 190OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
206 191
207OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ 192OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
208OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ 193OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
@@ -212,44 +197,39 @@ OP_FORLOOP,/* A sBx R(A)+=R(A+2);
212 if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ 197 if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
213OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ 198OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
214 199
215OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */ 200OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
216OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/ 201 if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */
217
218OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ 202OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
219 203
220OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */ 204OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/
221 205OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */
222OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */
223 206
224OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ 207OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */
225} OpCode; 208} OpCode;
226 209
227 210
228#define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1) 211#define NUM_OPCODES (cast(int, OP_VARARG) + 1)
229 212
230 213
231 214
232/*=========================================================================== 215/*===========================================================================
233 Notes: 216 Notes:
234 (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is 217 (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
235 set to last_result+1, so next open instruction (OP_CALL, OP_RETURN, 218 and can be 0: OP_CALL then sets `top' to last_result+1, so
236 OP_SETLIST) may use `top'. 219 next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
237 220
238 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and 221 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
239 set top (like in OP_CALL with C == 0). 222 set top (like in OP_CALL with C == 0).
240 223
241 (*) In OP_RETURN, if (B == 0) then return up to `top'. 224 (*) In OP_RETURN, if (B == 0) then return up to `top'
242 225
243 (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next 226 (*) In OP_SETLIST, if (B == 0) then B = `top';
244 'instruction' is EXTRAARG(real C). 227 if (C == 0) then next `instruction' is real C
245
246 (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
247 228
248 (*) For comparisons, A specifies what condition the test should accept 229 (*) For comparisons, A specifies what condition the test should accept
249 (true or false). 230 (true or false).
250
251 (*) All `skips' (pc++) assume that next instruction is a jump.
252 231
232 (*) All `skips' (pc++) assume that next instruction is a jump
253===========================================================================*/ 233===========================================================================*/
254 234
255 235
@@ -259,8 +239,8 @@ OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
259** bits 2-3: C arg mode 239** bits 2-3: C arg mode
260** bits 4-5: B arg mode 240** bits 4-5: B arg mode
261** bit 6: instruction set register A 241** bit 6: instruction set register A
262** bit 7: operator is a test (next instruction must be a jump) 242** bit 7: operator is a test
263*/ 243*/
264 244
265enum OpArgMask { 245enum OpArgMask {
266 OpArgN, /* argument is not used */ 246 OpArgN, /* argument is not used */
@@ -269,7 +249,7 @@ enum OpArgMask {
269 OpArgK /* argument is a constant or register/constant */ 249 OpArgK /* argument is a constant or register/constant */
270}; 250};
271 251
272LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; 252LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES];
273 253
274#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) 254#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
275#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) 255#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
@@ -278,7 +258,7 @@ LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
278#define testTMode(m) (luaP_opmodes[m] & (1 << 7)) 258#define testTMode(m) (luaP_opmodes[m] & (1 << 7))
279 259
280 260
281LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ 261LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
282 262
283 263
284/* number of list items to accumulate before a SETLIST instruction */ 264/* number of list items to accumulate before a SETLIST instruction */