summaryrefslogtreecommitdiff
path: root/apps/plugins/lua/lgc.h
diff options
context:
space:
mode:
Diffstat (limited to 'apps/plugins/lua/lgc.h')
-rw-r--r--apps/plugins/lua/lgc.h159
1 files changed, 103 insertions, 56 deletions
diff --git a/apps/plugins/lua/lgc.h b/apps/plugins/lua/lgc.h
index 5123ccb479..84bb1cdf99 100644
--- a/apps/plugins/lua/lgc.h
+++ b/apps/plugins/lua/lgc.h
@@ -1,5 +1,5 @@
1/* 1/*
2** $Id$ 2** $Id: lgc.h,v 2.58.1.1 2013/04/12 18:48:47 roberto Exp $
3** Garbage Collector 3** Garbage Collector
4** See Copyright Notice in lua.h 4** See Copyright Notice in lua.h
5*/ 5*/
@@ -9,65 +9,107 @@
9 9
10 10
11#include "lobject.h" 11#include "lobject.h"
12#include "lstate.h"
13
14/*
15** Collectable objects may have one of three colors: white, which
16** means the object is not marked; gray, which means the
17** object is marked, but its references may be not marked; and
18** black, which means that the object and all its references are marked.
19** The main invariant of the garbage collector, while marking objects,
20** is that a black object can never point to a white one. Moreover,
21** any gray object must be in a "gray list" (gray, grayagain, weak,
22** allweak, ephemeron) so that it can be visited again before finishing
23** the collection cycle. These lists have no meaning when the invariant
24** is not being enforced (e.g., sweep phase).
25*/
26
27
28
29/* how much to allocate before next GC step */
30#if !defined(GCSTEPSIZE)
31/* ~100 small strings */
32#define GCSTEPSIZE (cast_int(100 * sizeof(TString)))
33#endif
12 34
13 35
14/* 36/*
15** Possible states of the Garbage Collector 37** Possible states of the Garbage Collector
16*/ 38*/
17#define GCSpause 0 39#define GCSpropagate 0
18#define GCSpropagate 1 40#define GCSatomic 1
19#define GCSsweepstring 2 41#define GCSsweepstring 2
20#define GCSsweep 3 42#define GCSsweepudata 3
21#define GCSfinalize 4 43#define GCSsweep 4
44#define GCSpause 5
45
22 46
47#define issweepphase(g) \
48 (GCSsweepstring <= (g)->gcstate && (g)->gcstate <= GCSsweep)
49
50#define isgenerational(g) ((g)->gckind == KGC_GEN)
23 51
24/* 52/*
25** some userful bit tricks 53** macros to tell when main invariant (white objects cannot point to black
54** ones) must be kept. During a non-generational collection, the sweep
55** phase may break the invariant, as objects turned white may point to
56** still-black objects. The invariant is restored when sweep ends and
57** all objects are white again. During a generational collection, the
58** invariant must be kept all times.
26*/ 59*/
27#define resetbits(x,m) ((x) &= cast(lu_byte, ~(m)))
28#define setbits(x,m) ((x) |= (m))
29#define testbits(x,m) ((x) & (m))
30#define bitmask(b) (1<<(b))
31#define bit2mask(b1,b2) (bitmask(b1) | bitmask(b2))
32#define l_setbit(x,b) setbits(x, bitmask(b))
33#define resetbit(x,b) resetbits(x, bitmask(b))
34#define testbit(x,b) testbits(x, bitmask(b))
35#define set2bits(x,b1,b2) setbits(x, (bit2mask(b1, b2)))
36#define reset2bits(x,b1,b2) resetbits(x, (bit2mask(b1, b2)))
37#define test2bits(x,b1,b2) testbits(x, (bit2mask(b1, b2)))
38 60
61#define keepinvariant(g) (isgenerational(g) || g->gcstate <= GCSatomic)
39 62
40 63
41/* 64/*
42** Layout for bit use in `marked' field: 65** Outside the collector, the state in generational mode is kept in
43** bit 0 - object is white (type 0) 66** 'propagate', so 'keepinvariant' is always true.
44** bit 1 - object is white (type 1)
45** bit 2 - object is black
46** bit 3 - for userdata: has been finalized
47** bit 3 - for tables: has weak keys
48** bit 4 - for tables: has weak values
49** bit 5 - object is fixed (should not be collected)
50** bit 6 - object is "super" fixed (only the main thread)
51*/ 67*/
68#define keepinvariantout(g) \
69 check_exp(g->gcstate == GCSpropagate || !isgenerational(g), \
70 g->gcstate <= GCSatomic)
71
52 72
73/*
74** some useful bit tricks
75*/
76#define resetbits(x,m) ((x) &= cast(lu_byte, ~(m)))
77#define setbits(x,m) ((x) |= (m))
78#define testbits(x,m) ((x) & (m))
79#define bitmask(b) (1<<(b))
80#define bit2mask(b1,b2) (bitmask(b1) | bitmask(b2))
81#define l_setbit(x,b) setbits(x, bitmask(b))
82#define resetbit(x,b) resetbits(x, bitmask(b))
83#define testbit(x,b) testbits(x, bitmask(b))
84
85
86/* Layout for bit use in `marked' field: */
87#define WHITE0BIT 0 /* object is white (type 0) */
88#define WHITE1BIT 1 /* object is white (type 1) */
89#define BLACKBIT 2 /* object is black */
90#define FINALIZEDBIT 3 /* object has been separated for finalization */
91#define SEPARATED 4 /* object is in 'finobj' list or in 'tobefnz' */
92#define FIXEDBIT 5 /* object is fixed (should not be collected) */
93#define OLDBIT 6 /* object is old (only in generational mode) */
94/* bit 7 is currently used by tests (luaL_checkmemory) */
53 95
54#define WHITE0BIT 0
55#define WHITE1BIT 1
56#define BLACKBIT 2
57#define FINALIZEDBIT 3
58#define KEYWEAKBIT 3
59#define VALUEWEAKBIT 4
60#define FIXEDBIT 5
61#define SFIXEDBIT 6
62#define WHITEBITS bit2mask(WHITE0BIT, WHITE1BIT) 96#define WHITEBITS bit2mask(WHITE0BIT, WHITE1BIT)
63 97
64 98
65#define iswhite(x) test2bits((x)->gch.marked, WHITE0BIT, WHITE1BIT) 99#define iswhite(x) testbits((x)->gch.marked, WHITEBITS)
66#define isblack(x) testbit((x)->gch.marked, BLACKBIT) 100#define isblack(x) testbit((x)->gch.marked, BLACKBIT)
67#define isgray(x) (!isblack(x) && !iswhite(x)) 101#define isgray(x) /* neither white nor black */ \
102 (!testbits((x)->gch.marked, WHITEBITS | bitmask(BLACKBIT)))
103
104#define isold(x) testbit((x)->gch.marked, OLDBIT)
105
106/* MOVE OLD rule: whenever an object is moved to the beginning of
107 a GC list, its old bit must be cleared */
108#define resetoldbit(o) resetbit((o)->gch.marked, OLDBIT)
68 109
69#define otherwhite(g) (g->currentwhite ^ WHITEBITS) 110#define otherwhite(g) (g->currentwhite ^ WHITEBITS)
70#define isdead(g,v) ((v)->gch.marked & otherwhite(g) & WHITEBITS) 111#define isdeadm(ow,m) (!(((m) ^ WHITEBITS) & (ow)))
112#define isdead(g,v) isdeadm(otherwhite(g), (v)->gch.marked)
71 113
72#define changewhite(x) ((x)->gch.marked ^= WHITEBITS) 114#define changewhite(x) ((x)->gch.marked ^= WHITEBITS)
73#define gray2black(x) l_setbit((x)->gch.marked, BLACKBIT) 115#define gray2black(x) l_setbit((x)->gch.marked, BLACKBIT)
@@ -77,34 +119,39 @@
77#define luaC_white(g) cast(lu_byte, (g)->currentwhite & WHITEBITS) 119#define luaC_white(g) cast(lu_byte, (g)->currentwhite & WHITEBITS)
78 120
79 121
80#define luaC_checkGC(L) { \ 122#define luaC_condGC(L,c) \
81 condhardstacktests(luaD_reallocstack(L, L->stacksize - EXTRA_STACK - 1)); \ 123 {if (G(L)->GCdebt > 0) {c;}; condchangemem(L);}
82 if (G(L)->totalbytes >= G(L)->GCthreshold) \ 124#define luaC_checkGC(L) luaC_condGC(L, luaC_step(L);)
83 luaC_step(L); }
84 125
85 126
86#define luaC_barrier(L,p,v) { if (valiswhite(v) && isblack(obj2gco(p))) \ 127#define luaC_barrier(L,p,v) { if (valiswhite(v) && isblack(obj2gco(p))) \
87 luaC_barrierf(L,obj2gco(p),gcvalue(v)); } 128 luaC_barrier_(L,obj2gco(p),gcvalue(v)); }
88 129
89#define luaC_barriert(L,t,v) { if (valiswhite(v) && isblack(obj2gco(t))) \ 130#define luaC_barrierback(L,p,v) { if (valiswhite(v) && isblack(obj2gco(p))) \
90 luaC_barrierback(L,t); } 131 luaC_barrierback_(L,p); }
91 132
92#define luaC_objbarrier(L,p,o) \ 133#define luaC_objbarrier(L,p,o) \
93 { if (iswhite(obj2gco(o)) && isblack(obj2gco(p))) \ 134 { if (iswhite(obj2gco(o)) && isblack(obj2gco(p))) \
94 luaC_barrierf(L,obj2gco(p),obj2gco(o)); } 135 luaC_barrier_(L,obj2gco(p),obj2gco(o)); }
95 136
96#define luaC_objbarriert(L,t,o) \ 137#define luaC_objbarrierback(L,p,o) \
97 { if (iswhite(obj2gco(o)) && isblack(obj2gco(t))) luaC_barrierback(L,t); } 138 { if (iswhite(obj2gco(o)) && isblack(obj2gco(p))) luaC_barrierback_(L,p); }
98 139
99LUAI_FUNC size_t luaC_separateudata (lua_State *L, int all); 140#define luaC_barrierproto(L,p,c) \
100LUAI_FUNC void luaC_callGCTM (lua_State *L); 141 { if (isblack(obj2gco(p))) luaC_barrierproto_(L,p,c); }
101LUAI_FUNC void luaC_freeall (lua_State *L);
102LUAI_FUNC void luaC_step (lua_State *L);
103LUAI_FUNC void luaC_fullgc (lua_State *L);
104LUAI_FUNC void luaC_link (lua_State *L, GCObject *o, lu_byte tt);
105LUAI_FUNC void luaC_linkupval (lua_State *L, UpVal *uv);
106LUAI_FUNC void luaC_barrierf (lua_State *L, GCObject *o, GCObject *v);
107LUAI_FUNC void luaC_barrierback (lua_State *L, Table *t);
108 142
143LUAI_FUNC void luaC_freeallobjects (lua_State *L);
144LUAI_FUNC void luaC_step (lua_State *L);
145LUAI_FUNC void luaC_forcestep (lua_State *L);
146LUAI_FUNC void luaC_runtilstate (lua_State *L, int statesmask);
147LUAI_FUNC void luaC_fullgc (lua_State *L, int isemergency);
148LUAI_FUNC GCObject *luaC_newobj (lua_State *L, int tt, size_t sz,
149 GCObject **list, int offset);
150LUAI_FUNC void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v);
151LUAI_FUNC void luaC_barrierback_ (lua_State *L, GCObject *o);
152LUAI_FUNC void luaC_barrierproto_ (lua_State *L, Proto *p, Closure *c);
153LUAI_FUNC void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt);
154LUAI_FUNC void luaC_checkupvalcolor (global_State *g, UpVal *uv);
155LUAI_FUNC void luaC_changemode (lua_State *L, int mode);
109 156
110#endif 157#endif