summaryrefslogtreecommitdiff
path: root/apps/codecs/libfaad/mdct.c
diff options
context:
space:
mode:
Diffstat (limited to 'apps/codecs/libfaad/mdct.c')
-rw-r--r--apps/codecs/libfaad/mdct.c298
1 files changed, 0 insertions, 298 deletions
diff --git a/apps/codecs/libfaad/mdct.c b/apps/codecs/libfaad/mdct.c
deleted file mode 100644
index 902c3f303d..0000000000
--- a/apps/codecs/libfaad/mdct.c
+++ /dev/null
@@ -1,298 +0,0 @@
1/*
2** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
4**
5** This program is free software; you can redistribute it and/or modify
6** it under the terms of the GNU General Public License as published by
7** the Free Software Foundation; either version 2 of the License, or
8** (at your option) any later version.
9**
10** This program is distributed in the hope that it will be useful,
11** but WITHOUT ANY WARRANTY; without even the implied warranty of
12** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13** GNU General Public License for more details.
14**
15** You should have received a copy of the GNU General Public License
16** along with this program; if not, write to the Free Software
17** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18**
19** Any non-GPL usage of this software or parts of this software is strictly
20** forbidden.
21**
22** Commercial non-GPL licensing of this software is possible.
23** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
24**
25** $Id$
26**/
27
28/*
29 * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform)
30 * and consists of three steps: pre-(I)FFT complex multiplication, complex
31 * (I)FFT, post-(I)FFT complex multiplication,
32 *
33 * As described in:
34 * P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the
35 * Implementation of Filter Banks Based on 'Time Domain Aliasing
36 * Cancellation’," IEEE Proc. on ICASSP‘91, 1991, pp. 2209-2212.
37 *
38 *
39 * As of April 6th 2002 completely rewritten.
40 * This (I)MDCT can now be used for any data size n, where n is divisible by 8.
41 *
42 */
43
44#include "common.h"
45#include "structs.h"
46
47#include <stdlib.h>
48#ifdef _WIN32_WCE
49#define assert(x)
50#else
51#include <assert.h>
52#endif
53
54#include "cfft.h"
55#include "mdct.h"
56#include "mdct_tab.h"
57
58
59mdct_info *faad_mdct_init(uint16_t N)
60{
61 mdct_info *mdct = (mdct_info*)faad_malloc(sizeof(mdct_info));
62
63 //assert(N % 8 == 0);
64
65 mdct->N = N;
66
67 /* NOTE: For "small framelengths" in FIXED_POINT the coefficients need to be
68 * scaled by sqrt("(nearest power of 2) > N" / N) */
69
70 /* RE(mdct->sincos[k]) = scale*(real_t)(cos(2.0*M_PI*(k+1./8.) / (real_t)N));
71 * IM(mdct->sincos[k]) = scale*(real_t)(sin(2.0*M_PI*(k+1./8.) / (real_t)N)); */
72 /* scale is 1 for fixed point, sqrt(N) for floating point */
73 switch (N)
74 {
75 case 2048: mdct->sincos = (complex_t*)mdct_tab_2048; break;
76 case 256: mdct->sincos = (complex_t*)mdct_tab_256; break;
77#ifdef LD_DEC
78 case 1024: mdct->sincos = (complex_t*)mdct_tab_1024; break;
79#endif
80#ifdef ALLOW_SMALL_FRAMELENGTH
81 case 1920: mdct->sincos = (complex_t*)mdct_tab_1920; break;
82 case 240: mdct->sincos = (complex_t*)mdct_tab_240; break;
83#ifdef LD_DEC
84 case 960: mdct->sincos = (complex_t*)mdct_tab_960; break;
85#endif
86#endif
87#ifdef SSR_DEC
88 case 512: mdct->sincos = (complex_t*)mdct_tab_512; break;
89 case 64: mdct->sincos = (complex_t*)mdct_tab_64; break;
90#endif
91 }
92
93 /* initialise fft */
94 mdct->cfft = cffti(N/4);
95
96#ifdef PROFILE
97 mdct->cycles = 0;
98 mdct->fft_cycles = 0;
99#endif
100
101 return mdct;
102}
103
104void faad_mdct_end(mdct_info *mdct)
105{
106 if (mdct != NULL)
107 {
108#ifdef PROFILE
109 printf("MDCT[%.4d]: %I64d cycles\n", mdct->N, mdct->cycles);
110 printf("CFFT[%.4d]: %I64d cycles\n", mdct->N/4, mdct->fft_cycles);
111#endif
112
113 cfftu(mdct->cfft);
114
115 faad_free(mdct);
116 }
117}
118
119void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
120{
121 uint16_t k;
122
123 complex_t x;
124#ifdef ALLOW_SMALL_FRAMELENGTH
125#ifdef FIXED_POINT
126 real_t scale = 0, b_scale = 0;
127#endif
128#endif
129 ALIGN static complex_t Z1[512] IBSS_ATTR;
130 complex_t *sincos = mdct->sincos;
131
132 uint16_t N = mdct->N;
133 uint16_t N2 = N >> 1;
134 uint16_t N4 = N >> 2;
135 uint16_t N8 = N >> 3;
136
137#ifdef PROFILE
138 int64_t count1, count2 = faad_get_ts();
139#endif
140
141#ifdef ALLOW_SMALL_FRAMELENGTH
142#ifdef FIXED_POINT
143 /* detect non-power of 2 */
144 if (N & (N-1))
145 {
146 /* adjust scale for non-power of 2 MDCT */
147 /* 2048/1920 */
148 b_scale = 1;
149 scale = COEF_CONST(1.0666666666666667);
150 }
151#endif
152#endif
153
154 /* pre-IFFT complex multiplication */
155 for (k = 0; k < N4; k++)
156 {
157 ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
158 X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k]));
159 }
160
161#ifdef PROFILE
162 count1 = faad_get_ts();
163#endif
164
165 /* complex IFFT, any non-scaling FFT can be used here */
166 cfftb(mdct->cfft, Z1);
167
168#ifdef PROFILE
169 count1 = faad_get_ts() - count1;
170#endif
171
172 /* post-IFFT complex multiplication */
173 for (k = 0; k < N4; k++)
174 {
175 RE(x) = RE(Z1[k]);
176 IM(x) = IM(Z1[k]);
177 ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
178 IM(x), RE(x), RE(sincos[k]), IM(sincos[k]));
179
180#ifdef ALLOW_SMALL_FRAMELENGTH
181#ifdef FIXED_POINT
182 /* non-power of 2 MDCT scaling */
183 if (b_scale)
184 {
185 RE(Z1[k]) = MUL_C(RE(Z1[k]), scale);
186 IM(Z1[k]) = MUL_C(IM(Z1[k]), scale);
187 }
188#endif
189#endif
190 }
191
192 /* reordering */
193 for (k = 0; k < N8; k+=2)
194 {
195 X_out[ 2*k] = IM(Z1[N8 + k]);
196 X_out[ 2 + 2*k] = IM(Z1[N8 + 1 + k]);
197
198 X_out[ 1 + 2*k] = -RE(Z1[N8 - 1 - k]);
199 X_out[ 3 + 2*k] = -RE(Z1[N8 - 2 - k]);
200
201 X_out[N4 + 2*k] = RE(Z1[ k]);
202 X_out[N4 + + 2 + 2*k] = RE(Z1[ 1 + k]);
203
204 X_out[N4 + 1 + 2*k] = -IM(Z1[N4 - 1 - k]);
205 X_out[N4 + 3 + 2*k] = -IM(Z1[N4 - 2 - k]);
206
207 X_out[N2 + 2*k] = RE(Z1[N8 + k]);
208 X_out[N2 + + 2 + 2*k] = RE(Z1[N8 + 1 + k]);
209
210 X_out[N2 + 1 + 2*k] = -IM(Z1[N8 - 1 - k]);
211 X_out[N2 + 3 + 2*k] = -IM(Z1[N8 - 2 - k]);
212
213 X_out[N2 + N4 + 2*k] = -IM(Z1[ k]);
214 X_out[N2 + N4 + 2 + 2*k] = -IM(Z1[ 1 + k]);
215
216 X_out[N2 + N4 + 1 + 2*k] = RE(Z1[N4 - 1 - k]);
217 X_out[N2 + N4 + 3 + 2*k] = RE(Z1[N4 - 2 - k]);
218 }
219
220#ifdef PROFILE
221 count2 = faad_get_ts() - count2;
222 mdct->fft_cycles += count1;
223 mdct->cycles += (count2 - count1);
224#endif
225}
226
227#ifdef LTP_DEC
228void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
229{
230 uint16_t k;
231
232 complex_t x;
233 ALIGN static complex_t Z1[512];
234 complex_t *sincos = mdct->sincos;
235
236 uint16_t N = mdct->N;
237 uint16_t N2 = N >> 1;
238 uint16_t N4 = N >> 2;
239 uint16_t N8 = N >> 3;
240
241#ifndef FIXED_POINT
242 real_t scale = REAL_CONST(N);
243#else
244 real_t scale = REAL_CONST(4.0/N);
245#endif
246
247#ifdef ALLOW_SMALL_FRAMELENGTH
248#ifdef FIXED_POINT
249 /* detect non-power of 2 */
250 if (N & (N-1))
251 {
252 /* adjust scale for non-power of 2 MDCT */
253 /* *= sqrt(2048/1920) */
254 scale = MUL_C(scale, COEF_CONST(1.0327955589886444));
255 }
256#endif
257#endif
258
259 /* pre-FFT complex multiplication */
260 for (k = 0; k < N8; k++)
261 {
262 uint16_t n = k << 1;
263 RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 + n];
264 IM(x) = X_in[ N4 + n] - X_in[ N4 - 1 - n];
265
266 ComplexMult(&RE(Z1[k]), &IM(Z1[k]),
267 RE(x), IM(x), RE(sincos[k]), IM(sincos[k]));
268
269 RE(Z1[k]) = MUL_R(RE(Z1[k]), scale);
270 IM(Z1[k]) = MUL_R(IM(Z1[k]), scale);
271
272 RE(x) = X_in[N2 - 1 - n] - X_in[ n];
273 IM(x) = X_in[N2 + n] + X_in[N - 1 - n];
274
275 ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]),
276 RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8]));
277
278 RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale);
279 IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale);
280 }
281
282 /* complex FFT, any non-scaling FFT can be used here */
283 cfftf(mdct->cfft, Z1);
284
285 /* post-FFT complex multiplication */
286 for (k = 0; k < N4; k++)
287 {
288 uint16_t n = k << 1;
289 ComplexMult(&RE(x), &IM(x),
290 RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k]));
291
292 X_out[ n] = -RE(x);
293 X_out[N2 - 1 - n] = IM(x);
294 X_out[N2 + n] = -IM(x);
295 X_out[N - 1 - n] = RE(x);
296 }
297}
298#endif