summaryrefslogtreecommitdiff
path: root/apps/codecs/libFLAC/md5.c
diff options
context:
space:
mode:
Diffstat (limited to 'apps/codecs/libFLAC/md5.c')
-rw-r--r--apps/codecs/libFLAC/md5.c315
1 files changed, 315 insertions, 0 deletions
diff --git a/apps/codecs/libFLAC/md5.c b/apps/codecs/libFLAC/md5.c
new file mode 100644
index 0000000000..9679387db9
--- /dev/null
+++ b/apps/codecs/libFLAC/md5.c
@@ -0,0 +1,315 @@
1/*
2 * This code implements the MD5 message-digest algorithm.
3 * The algorithm is due to Ron Rivest. This code was
4 * written by Colin Plumb in 1993, no copyright is claimed.
5 * This code is in the public domain; do with it what you wish.
6 *
7 * Equivalent code is available from RSA Data Security, Inc.
8 * This code has been tested against that, and is equivalent,
9 * except that you don't need to include two pages of legalese
10 * with every copy.
11 *
12 * To compute the message digest of a chunk of bytes, declare an
13 * MD5Context structure, pass it to MD5Init, call MD5Update as
14 * needed on buffers full of bytes, and then call MD5Final, which
15 * will fill a supplied 16-byte array with the digest.
16 *
17 * Changed so as no longer to depend on Colin Plumb's `usual.h' header
18 * definitions; now uses stuff from dpkg's config.h.
19 * - Ian Jackson <ijackson@nyx.cs.du.edu>.
20 * Still in the public domain.
21 *
22 * Josh Coalson: made some changes to integrate with libFLAC.
23 * Still in the public domain.
24 */
25
26#include <stdlib.h> /* for malloc() */
27#include <string.h> /* for memcpy() */
28
29#include "private/md5.h"
30
31#ifdef HAVE_CONFIG_H
32#include <config.h>
33#endif
34
35#ifndef FLaC__INLINE
36#define FLaC__INLINE
37#endif
38
39static FLAC__bool is_big_endian_host_;
40
41#ifndef ASM_MD5
42
43/* The four core functions - F1 is optimized somewhat */
44
45/* #define F1(x, y, z) (x & y | ~x & z) */
46#define F1(x, y, z) (z ^ (x & (y ^ z)))
47#define F2(x, y, z) F1(z, x, y)
48#define F3(x, y, z) (x ^ y ^ z)
49#define F4(x, y, z) (y ^ (x | ~z))
50
51/* This is the central step in the MD5 algorithm. */
52#define MD5STEP(f,w,x,y,z,in,s) \
53 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
54
55/*
56 * The core of the MD5 algorithm, this alters an existing MD5 hash to
57 * reflect the addition of 16 longwords of new data. MD5Update blocks
58 * the data and converts bytes into longwords for this routine.
59 */
60FLaC__INLINE
61void
62FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16])
63{
64 register FLAC__uint32 a, b, c, d;
65
66 a = buf[0];
67 b = buf[1];
68 c = buf[2];
69 d = buf[3];
70
71 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
72 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
73 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
74 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
75 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
76 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
77 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
78 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
79 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
80 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
81 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
82 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
83 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
84 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
85 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
86 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
87
88 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
89 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
90 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
91 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
92 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
93 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
94 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
95 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
96 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
97 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
98 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
99 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
100 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
101 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
102 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
103 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
104
105 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
106 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
107 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
108 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
109 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
110 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
111 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
112 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
113 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
114 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
115 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
116 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
117 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
118 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
119 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
120 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
121
122 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
123 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
124 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
125 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
126 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
127 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
128 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
129 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
130 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
131 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
132 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
133 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
134 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
135 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
136 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
137 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
138
139 buf[0] += a;
140 buf[1] += b;
141 buf[2] += c;
142 buf[3] += d;
143}
144
145#endif
146
147FLaC__INLINE
148void
149byteSwap(FLAC__uint32 *buf, unsigned words)
150{
151 md5byte *p = (md5byte *)buf;
152
153 if(!is_big_endian_host_)
154 return;
155 do {
156 *buf++ = (FLAC__uint32)((unsigned)p[3] << 8 | p[2]) << 16 | ((unsigned)p[1] << 8 | p[0]);
157 p += 4;
158 } while (--words);
159}
160
161/*
162 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
163 * initialization constants.
164 */
165void
166FLAC__MD5Init(struct FLAC__MD5Context *ctx)
167{
168 FLAC__uint32 test = 1;
169
170 is_big_endian_host_ = (*((FLAC__byte*)(&test)))? false : true;
171
172 ctx->buf[0] = 0x67452301;
173 ctx->buf[1] = 0xefcdab89;
174 ctx->buf[2] = 0x98badcfe;
175 ctx->buf[3] = 0x10325476;
176
177 ctx->bytes[0] = 0;
178 ctx->bytes[1] = 0;
179
180 ctx->internal_buf = 0;
181 ctx->capacity = 0;
182}
183
184/*
185 * Update context to reflect the concatenation of another buffer full
186 * of bytes.
187 */
188void
189FLAC__MD5Update(struct FLAC__MD5Context *ctx, md5byte const *buf, unsigned len)
190{
191 FLAC__uint32 t;
192
193 /* Update byte count */
194
195 t = ctx->bytes[0];
196 if ((ctx->bytes[0] = t + len) < t)
197 ctx->bytes[1]++; /* Carry from low to high */
198
199 t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */
200 if (t > len) {
201 memcpy((md5byte *)ctx->in + 64 - t, buf, len);
202 return;
203 }
204 /* First chunk is an odd size */
205 memcpy((md5byte *)ctx->in + 64 - t, buf, t);
206 byteSwap(ctx->in, 16);
207 FLAC__MD5Transform(ctx->buf, ctx->in);
208 buf += t;
209 len -= t;
210
211 /* Process data in 64-byte chunks */
212 while (len >= 64) {
213 memcpy(ctx->in, buf, 64);
214 byteSwap(ctx->in, 16);
215 FLAC__MD5Transform(ctx->buf, ctx->in);
216 buf += 64;
217 len -= 64;
218 }
219
220 /* Handle any remaining bytes of data. */
221 memcpy(ctx->in, buf, len);
222}
223
224/*
225 * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it.
226 */
227FLAC__bool
228FLAC__MD5Accumulate(struct FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
229{
230 unsigned channel, sample, a_byte;
231 FLAC__int32 a_word;
232 FLAC__byte *buf_;
233 const unsigned bytes_needed = channels * samples * bytes_per_sample;
234
235 if(ctx->capacity < bytes_needed) {
236 FLAC__byte *tmp = (FLAC__byte*)realloc(ctx->internal_buf, bytes_needed);
237 if(0 == tmp) {
238 free(ctx->internal_buf);
239 if(0 == (ctx->internal_buf = (FLAC__byte*)malloc(bytes_needed)))
240 return false;
241 }
242 ctx->internal_buf = tmp;
243 ctx->capacity = bytes_needed;
244 }
245
246 buf_ = ctx->internal_buf;
247
248#ifdef FLAC__CPU_IA32
249 if(channels == 2 && bytes_per_sample == 2) {
250 memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples);
251 buf_ += sizeof(FLAC__int16);
252 for(sample = 0; sample < samples; sample++)
253 ((FLAC__int16 *)buf_)[2 * sample] = (FLAC__int16)signal[1][sample];
254 }
255 else if(channels == 1 && bytes_per_sample == 2) {
256 for(sample = 0; sample < samples; sample++)
257 ((FLAC__int16 *)buf_)[sample] = (FLAC__int16)signal[0][sample];
258 }
259 else
260#endif
261 for(sample = 0; sample < samples; sample++) {
262 for(channel = 0; channel < channels; channel++) {
263 a_word = signal[channel][sample];
264 for(a_byte = 0; a_byte < bytes_per_sample; a_byte++) {
265 *buf_++ = (FLAC__byte)(a_word & 0xff);
266 a_word >>= 8;
267 }
268 }
269 }
270
271 FLAC__MD5Update(ctx, ctx->internal_buf, bytes_needed);
272
273 return true;
274}
275
276/*
277 * Final wrapup - pad to 64-byte boundary with the bit pattern
278 * 1 0* (64-bit count of bits processed, MSB-first)
279 */
280void
281FLAC__MD5Final(md5byte digest[16], struct FLAC__MD5Context *ctx)
282{
283 int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */
284 md5byte *p = (md5byte *)ctx->in + count;
285
286 /* Set the first char of padding to 0x80. There is always room. */
287 *p++ = 0x80;
288
289 /* Bytes of padding needed to make 56 bytes (-8..55) */
290 count = 56 - 1 - count;
291
292 if (count < 0) { /* Padding forces an extra block */
293 memset(p, 0, count + 8);
294 byteSwap(ctx->in, 16);
295 FLAC__MD5Transform(ctx->buf, ctx->in);
296 p = (md5byte *)ctx->in;
297 count = 56;
298 }
299 memset(p, 0, count);
300 byteSwap(ctx->in, 14);
301
302 /* Append length in bits and transform */
303 ctx->in[14] = ctx->bytes[0] << 3;
304 ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
305 FLAC__MD5Transform(ctx->buf, ctx->in);
306
307 byteSwap(ctx->buf, 4);
308 memcpy(digest, ctx->buf, 16);
309 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
310 if(0 != ctx->internal_buf) {
311 free(ctx->internal_buf);
312 ctx->internal_buf = 0;
313 ctx->capacity = 0;
314 }
315}