summaryrefslogtreecommitdiff
path: root/firmware
diff options
context:
space:
mode:
authorAmaury Pouly <amaury.pouly@gmail.com>2016-05-02 21:57:55 +0100
committerGerrit Rockbox <gerrit@rockbox.org>2016-06-01 22:55:37 +0200
commit4d42e3685c55a6de9d05003f8482f7fb1be022fd (patch)
tree121c5fbe8a7f63a452fc523571962ecc60bd625c /firmware
parent615c638c7da1be395a13dd107be004b03a9c390d (diff)
downloadrockbox-4d42e3685c55a6de9d05003f8482f7fb1be022fd.tar.gz
rockbox-4d42e3685c55a6de9d05003f8482f7fb1be022fd.zip
imx233: rewrite i2c driver
The new driver provides several new features: - asynchronous transfer - transactions (several transfers executed at once) - queueing The style still provides the legacy interface. Change-Id: I6d8ecc89d1f7057847c9b2dc69b76cd45c9c8407
Diffstat (limited to 'firmware')
-rw-r--r--firmware/target/arm/imx233/fmradio-imx233.c2
-rw-r--r--firmware/target/arm/imx233/i2c-imx233.c362
-rw-r--r--firmware/target/arm/imx233/i2c-imx233.h70
3 files changed, 356 insertions, 78 deletions
diff --git a/firmware/target/arm/imx233/fmradio-imx233.c b/firmware/target/arm/imx233/fmradio-imx233.c
index 5263256ca3..85bad41653 100644
--- a/firmware/target/arm/imx233/fmradio-imx233.c
+++ b/firmware/target/arm/imx233/fmradio-imx233.c
@@ -24,7 +24,7 @@
24#include "fmradio-imx233.h" 24#include "fmradio-imx233.h"
25#include "fmradio-target.h" 25#include "fmradio-target.h"
26#include "pinctrl-imx233.h" 26#include "pinctrl-imx233.h"
27#include "i2c.h" 27#include "i2c-imx233.h"
28#include "generic_i2c.h" 28#include "generic_i2c.h"
29 29
30#ifndef IMX233_FMRADIO_I2C 30#ifndef IMX233_FMRADIO_I2C
diff --git a/firmware/target/arm/imx233/i2c-imx233.c b/firmware/target/arm/imx233/i2c-imx233.c
index d4e20d8a21..d6f0830ede 100644
--- a/firmware/target/arm/imx233/i2c-imx233.c
+++ b/firmware/target/arm/imx233/i2c-imx233.c
@@ -45,6 +45,166 @@
45 * are cache aligned and will copy back the data to user buffers at the end. 45 * are cache aligned and will copy back the data to user buffers at the end.
46 * The I2C_BUFFER_SIZE define controls the size of the buffer. All transfers 46 * The I2C_BUFFER_SIZE define controls the size of the buffer. All transfers
47 * should probably fit within 512 bytes. 47 * should probably fit within 512 bytes.
48 *
49 * On top of this, transfers are queued using the 'next' field of imx233_i2c_xfer_t.
50 * Each time a transfer is programmed, it is translated to dma transfers using
51 * the dma API.
52 */
53
54/**
55 * Internal DMA API to build the transfer.
56 * NOTE the api does not perform any locking, it is up to the caller to ensure
57 * that there only one transfer beint built at any time.
58 */
59
60/* start building a transfer */
61static void imx233_i2c_begin(void);
62/* add a stage
63 * NOTE for transmit, the data is copied to a buffer so the buffer can be freed
64 * afer this function return. For receive, buffer must exists until transfer is
65 * complete. This function assumes any receive transfer is final (master will
66 * send NAK). */
67static void imx233_i2c_add(bool start, bool transmit, void *buffer, unsigned size, bool stop);
68/* end building a transfer and start the transfer */
69static void imx233_i2c_kick(void);
70/* abort transfer (will call imx233_i2c_transfer_complete) */
71static void imx233_i2c_abort(void);
72/* set speed */
73static void imx233_i2c_set_speed(bool fast_mode);
74/* callback function when transfer is finished */
75static void imx233_i2c_transfer_complete(enum imx233_i2c_error_t status);
76
77/**
78 * Advanced API
79 */
80
81/* NOTE these variables are not marked as volatile because all functions
82 * do all operation with IRQ disabled, so they won't change their value
83 * in the middle of a function */
84static struct imx233_i2c_xfer_t *i2c_head; /* pointer to the current transfer */
85static struct imx233_i2c_xfer_t *i2c_tail; /* pointer to the last transfer */
86static struct timeout i2c_tmo; /* timeout */
87
88/* timeout callback */
89static int imx233_i2c_timeout(struct timeout *tmo);
90
91/* called in IRQ context or with IRQ disabled */
92static void imx233_i2c_start(void)
93{
94 uint8_t addr_wr = i2c_head->dev_addr;
95 uint8_t addr_rd = i2c_head->dev_addr | 1;
96 /* translate transfer using DMA API */
97 imx233_i2c_set_speed(i2c_head->fast_mode);
98 imx233_i2c_begin();
99 if(i2c_head->mode == I2C_WRITE)
100 {
101 /* START + addr */
102 imx233_i2c_add(true, true, &addr_wr, 1, false);
103 /* data + stop if no second stage */
104 imx233_i2c_add(false, true, i2c_head->data[0], i2c_head->count[0], i2c_head->count[1] == 0);
105 /* (if second stage) data + stop */
106 if(i2c_head->count[1] > 0)
107 imx233_i2c_add(false, true, i2c_head->data[1], i2c_head->count[1], true);
108 }
109 else /* I2C_READ */
110 {
111 /* (if write stage) */
112 if(i2c_head->count[0] > 0)
113 {
114 /* START + addr */
115 imx233_i2c_add(true, true, &addr_wr, 1, false);
116 /* data */
117 imx233_i2c_add(false, true, i2c_head->data[0], i2c_head->count[0], false);
118 }
119 /* START + addr */
120 imx233_i2c_add(true, true, &addr_rd, 1, false);
121 /* read data + stop */
122 imx233_i2c_add(false, false, i2c_head->data[1], i2c_head->count[1], true);
123 }
124 /* kick transfer */
125 imx233_i2c_kick();
126 /* setup timer for timeout */
127 if(i2c_head->tmo_ms > 0)
128 timeout_register(&i2c_tmo, imx233_i2c_timeout, i2c_head->tmo_ms * HZ / 1000, 0);
129}
130
131/* unqueue head and notify completion, called with IRQ disabled */
132static void imx233_i2c_unqueue_head(enum imx233_i2c_error_t status)
133{
134 /* notify */
135 if(i2c_head->callback)
136 i2c_head->callback(i2c_head, status);
137 /* unqueue */
138 i2c_head = i2c_head->next;
139}
140
141/* callback function when transfer is finished, called with IRQ disabled */
142static void imx233_i2c_transfer_complete(enum imx233_i2c_error_t status)
143{
144 /* cancel timeout
145 * NOTE because IRQ are disabled, the timeout callback will not be called
146 * until we enable them back, at which point we will have disabled the timeout
147 * so the completion routine will not be called twice. */
148 if(i2c_head->tmo_ms > 0)
149 timeout_cancel(&i2c_tmo);
150 /* notify completion and unqueue
151 * WARNING completion callback can queue other transfers, so the only part
152 * of the queue that cannot change is this transaction, everything else can
153 * change */
154 struct imx233_i2c_xfer_t *this_xfer = i2c_head;
155 struct imx233_i2c_xfer_t *last_xfer = i2c_head->last; /* in transaction */
156 /* unqueue head */
157 imx233_i2c_unqueue_head(status);
158 /* in case of failure, skip others */
159 if(status != I2C_SUCCESS && this_xfer != last_xfer)
160 while(i2c_head != last_xfer)
161 imx233_i2c_unqueue_head(I2C_SKIP);
162 /* if there is anything left, start it */
163 if(i2c_head)
164 imx233_i2c_start();
165}
166
167static int imx233_i2c_timeout(struct timeout *tmo)
168{
169 (void) tmo;
170 imx233_i2c_abort();
171 return 0; /* do not fire again */
172}
173
174void imx233_i2c_transfer(struct imx233_i2c_xfer_t *xfer)
175{
176 /* avoid any race with the irq handler */
177 unsigned long cpsr = disable_irq_save();
178 /* before queuing, update link to last transfer in each transfer */
179 struct imx233_i2c_xfer_t *last = xfer;
180 while(last->next)
181 last = last->next;
182 struct imx233_i2c_xfer_t *tmp = xfer;
183 while(tmp)
184 {
185 tmp->last = last;
186 tmp = tmp->next;
187 }
188 /* no transfer pending: start one */
189 if(i2c_head == NULL)
190 {
191 i2c_head = xfer;
192 i2c_tail = last;
193 /* kick transfer now */
194 imx233_i2c_start();
195 }
196 /* pending transer: queue and let the irq handler process it for us */
197 else
198 {
199 i2c_tail->next = xfer;
200 i2c_tail = last;
201 }
202
203 restore_irq(cpsr);
204}
205
206/**
207 * DMA API implementation
48 */ 208 */
49 209
50/* Used for DMA */ 210/* Used for DMA */
@@ -53,7 +213,7 @@ struct i2c_dma_command_t
53 struct apb_dma_command_t dma; 213 struct apb_dma_command_t dma;
54 /* PIO words */ 214 /* PIO words */
55 uint32_t ctrl0; 215 uint32_t ctrl0;
56 /* copy buffer copy */ 216 /* copy buffer pointers */
57 void *src; 217 void *src;
58 void *dst; 218 void *dst;
59 /* padded to next multiple of cache line size (32 bytes) */ 219 /* padded to next multiple of cache line size (32 bytes) */
@@ -67,31 +227,9 @@ __ENSURE_STRUCT_CACHE_FRIENDLY(struct i2c_dma_command_t)
67/* Current transfer */ 227/* Current transfer */
68static int i2c_nr_stages; 228static int i2c_nr_stages;
69static struct i2c_dma_command_t i2c_stage[I2C_NR_STAGES]; 229static struct i2c_dma_command_t i2c_stage[I2C_NR_STAGES];
70static struct mutex i2c_mutex;
71static struct semaphore i2c_sema;
72static uint8_t i2c_buffer[I2C_BUFFER_SIZE] CACHEALIGN_ATTR; 230static uint8_t i2c_buffer[I2C_BUFFER_SIZE] CACHEALIGN_ATTR;
73static uint32_t i2c_buffer_end; /* current end */ 231static uint32_t i2c_buffer_end; /* current end */
74 232
75void INT_I2C_DMA(void)
76{
77 /* reset dma channel on error */
78 if(imx233_dma_is_channel_error_irq(APB_I2C))
79 imx233_dma_reset_channel(APB_I2C);
80 /* clear irq flags */
81 imx233_dma_clear_channel_interrupt(APB_I2C);
82 semaphore_release(&i2c_sema);
83}
84
85void INT_I2C_ERROR(void)
86{
87 /* reset dma channel on error */
88 if(imx233_dma_is_channel_error_irq(APB_I2C))
89 imx233_dma_reset_channel(APB_I2C);
90 /* clear irq flags */
91 imx233_dma_clear_channel_interrupt(APB_I2C);
92 semaphore_release(&i2c_sema);
93}
94
95static void imx233_i2c_reset(void) 233static void imx233_i2c_reset(void)
96{ 234{
97 /* clear softreset */ 235 /* clear softreset */
@@ -107,10 +245,6 @@ static void imx233_i2c_reset(void)
107 BF_SET(I2C_CTRL1, ACK_MODE); 245 BF_SET(I2C_CTRL1, ACK_MODE);
108#endif 246#endif
109 BF_SET(I2C_CTRL0, CLKGATE); 247 BF_SET(I2C_CTRL0, CLKGATE);
110 /* Fast-mode @ 400K */
111 HW_I2C_TIMING0 = 0x000F0007; /* tHIGH=0.6us, read at 0.3us */
112 HW_I2C_TIMING1 = 0x001F000F; /* tLOW=1.3us, write at 0.6us */
113 HW_I2C_TIMING2 = 0x0015000D;
114} 248}
115 249
116void imx233_i2c_init(void) 250void imx233_i2c_init(void)
@@ -120,31 +254,27 @@ void imx233_i2c_init(void)
120 imx233_pinctrl_setup_vpin(VPIN_I2C_SCL, "i2c scl", PINCTRL_DRIVE_4mA, true); 254 imx233_pinctrl_setup_vpin(VPIN_I2C_SCL, "i2c scl", PINCTRL_DRIVE_4mA, true);
121 imx233_pinctrl_setup_vpin(VPIN_I2C_SDA, "i2c sda", PINCTRL_DRIVE_4mA, true); 255 imx233_pinctrl_setup_vpin(VPIN_I2C_SDA, "i2c sda", PINCTRL_DRIVE_4mA, true);
122 imx233_i2c_reset(); 256 imx233_i2c_reset();
123 mutex_init(&i2c_mutex); 257 i2c_head = i2c_tail = NULL;
124 semaphore_init(&i2c_sema, 1, 0);
125} 258}
126 259
127void imx233_i2c_begin(void) 260static void imx233_i2c_begin(void)
128{ 261{
129 mutex_lock(&i2c_mutex);
130 /* wakeup */ 262 /* wakeup */
131 BF_CLR(I2C_CTRL0, CLKGATE); 263 BF_CLR(I2C_CTRL0, CLKGATE);
132 i2c_nr_stages = 0; 264 i2c_nr_stages = 0;
133 i2c_buffer_end = 0; 265 i2c_buffer_end = 0;
134} 266}
135 267
136enum imx233_i2c_error_t imx233_i2c_add(bool start, bool transmit, void *buffer, unsigned size, bool stop) 268static void imx233_i2c_add(bool start, bool transmit,
269 void *buffer, unsigned size, bool stop)
137{ 270{
138 if(i2c_nr_stages == I2C_NR_STAGES) 271 if(i2c_nr_stages == I2C_NR_STAGES)
139 return I2C_ERROR; 272 panicf("i2c: too many stages");
140 /* align buffer end on cache boundary */ 273 /* align buffer end on cache boundary */
141 uint32_t start_off = CACHEALIGN_UP(i2c_buffer_end); 274 uint32_t start_off = CACHEALIGN_UP(i2c_buffer_end);
142 uint32_t end_off = start_off + size; 275 uint32_t end_off = start_off + size;
143 if(end_off > I2C_BUFFER_SIZE) 276 if(end_off > I2C_BUFFER_SIZE)
144 { 277 panicf("i2c: transfer is too big");
145 panicf("die");
146 return I2C_BUFFER_FULL;
147 }
148 i2c_buffer_end = end_off; 278 i2c_buffer_end = end_off;
149 if(transmit) 279 if(transmit)
150 { 280 {
@@ -175,7 +305,6 @@ enum imx233_i2c_error_t imx233_i2c_add(bool start, bool transmit, void *buffer,
175 XFER_COUNT(size), DIRECTION(transmit), SEND_NAK_ON_LAST(!transmit), 305 XFER_COUNT(size), DIRECTION(transmit), SEND_NAK_ON_LAST(!transmit),
176 PRE_SEND_START(start), POST_SEND_STOP(stop), MASTER_MODE(1)); 306 PRE_SEND_START(start), POST_SEND_STOP(stop), MASTER_MODE(1));
177 i2c_nr_stages++; 307 i2c_nr_stages++;
178 return I2C_SUCCESS;
179} 308}
180 309
181static enum imx233_i2c_error_t imx233_i2c_finalize(void) 310static enum imx233_i2c_error_t imx233_i2c_finalize(void)
@@ -190,10 +319,10 @@ static enum imx233_i2c_error_t imx233_i2c_finalize(void)
190 return I2C_SUCCESS; 319 return I2C_SUCCESS;
191} 320}
192 321
193enum imx233_i2c_error_t imx233_i2c_end(unsigned timeout) 322static void imx233_i2c_kick(void)
194{ 323{
195 if(i2c_nr_stages == 0) 324 if(i2c_nr_stages == 0)
196 return I2C_ERROR; 325 panicf("i2c: empty kick");
197 i2c_stage[i2c_nr_stages - 1].dma.cmd |= BM_APB_CHx_CMD_SEMAPHORE | BM_APB_CHx_CMD_IRQONCMPLT; 326 i2c_stage[i2c_nr_stages - 1].dma.cmd |= BM_APB_CHx_CMD_SEMAPHORE | BM_APB_CHx_CMD_IRQONCMPLT;
198 327
199 BF_CLR(I2C_CTRL1, SLAVE_IRQ, SLAVE_STOP_IRQ, MASTER_LOSS_IRQ, EARLY_TERM_IRQ, 328 BF_CLR(I2C_CTRL1, SLAVE_IRQ, SLAVE_STOP_IRQ, MASTER_LOSS_IRQ, EARLY_TERM_IRQ,
@@ -203,15 +332,24 @@ enum imx233_i2c_error_t imx233_i2c_end(unsigned timeout)
203 imx233_icoll_enable_interrupt(INT_SRC_I2C_ERROR, true); 332 imx233_icoll_enable_interrupt(INT_SRC_I2C_ERROR, true);
204 imx233_dma_enable_channel_interrupt(APB_I2C, true); 333 imx233_dma_enable_channel_interrupt(APB_I2C, true);
205 imx233_dma_start_command(APB_I2C, &i2c_stage[0].dma); 334 imx233_dma_start_command(APB_I2C, &i2c_stage[0].dma);
335}
206 336
337static void imx233_i2c_abort(void)
338{
339 /* FIXME there is a race condition here: if dma irq fires right before we
340 * reset the channel, it will most likely trigger an IRQ anyway. It is
341 * extremely unlikely but ideally, we should check this in the IRQ handler
342 * with an id/counter. */
343 imx233_dma_reset_channel(APB_I2C);
344 imx233_i2c_reset();
345 imx233_i2c_transfer_complete(I2C_TIMEOUT);
346}
347
348static enum imx233_i2c_error_t imx233_i2c_end(void)
349{
207 enum imx233_i2c_error_t ret; 350 enum imx233_i2c_error_t ret;
208 if(semaphore_wait(&i2c_sema, timeout) == OBJ_WAIT_TIMEDOUT) 351 /* check for various errors */
209 { 352 if(BF_RD(I2C_CTRL1, MASTER_LOSS_IRQ))
210 imx233_dma_reset_channel(APB_I2C);
211 imx233_i2c_reset();
212 ret = I2C_TIMEOUT;
213 }
214 else if(BF_RD(I2C_CTRL1, MASTER_LOSS_IRQ))
215 ret = I2C_MASTER_LOSS; 353 ret = I2C_MASTER_LOSS;
216 else if(BF_RD(I2C_CTRL1, NO_SLAVE_ACK_IRQ)) 354 else if(BF_RD(I2C_CTRL1, NO_SLAVE_ACK_IRQ))
217 { 355 {
@@ -229,48 +367,132 @@ enum imx233_i2c_error_t imx233_i2c_end(unsigned timeout)
229 ret = imx233_i2c_finalize(); 367 ret = imx233_i2c_finalize();
230 /* sleep */ 368 /* sleep */
231 BF_SET(I2C_CTRL0, CLKGATE); 369 BF_SET(I2C_CTRL0, CLKGATE);
232 mutex_unlock(&i2c_mutex);
233 return ret; 370 return ret;
234} 371}
235 372
373static void imx233_i2c_set_speed(bool fast_mode)
374{
375 /* See I2C specification for standard- and fast-mode timings
376 * Clock is derived APBX which we assume to be running at 24 MHz. */
377 if(fast_mode)
378 {
379 /* Fast-mode @ 400 kHz */
380 HW_I2C_TIMING0 = 0x000f0007; /* HIGH_COUNT=0.6us, RCV_COUNT=0.2us */
381 HW_I2C_TIMING1 = 0x001f000f; /* LOW_COUNT=1.3us, XMIT_COUNT=0.6us */
382 HW_I2C_TIMING2 = 0x0015000d; /* BUS_FREE=0.9us LEADIN_COUNT=0.55us */
383 }
384 else
385 {
386 /* Standard-mode @ 100 kHz */
387 HW_I2C_TIMING0 = 0x00780030; /* HIGH_COUNT=5us, RCV_COUNT=2us */
388 HW_I2C_TIMING1 = 0x00800030; /* LOW_COUNT=5.3us, XMIT_COUNT=2us */
389 HW_I2C_TIMING2 = 0x00300030; /* BUS_FREE=2us LEADIN_COUNT=2us */
390 }
391}
392
393static void imx233_i2c_irq(bool err)
394{
395 if(err)
396 panicf("i2c: dma error");
397 /* reset dma channel on error */
398 if(imx233_dma_is_channel_error_irq(APB_I2C))
399 imx233_dma_reset_channel(APB_I2C);
400 /* clear irq flags */
401 imx233_dma_clear_channel_interrupt(APB_I2C);
402 /* handle completion */
403 imx233_i2c_transfer_complete(imx233_i2c_end());
404}
405
406void INT_I2C_DMA(void)
407{
408 imx233_i2c_irq(false);
409}
410
411void INT_I2C_ERROR(void)
412{
413 imx233_i2c_irq(true);
414}
415
416/** Public API */
417
236void i2c_init(void) 418void i2c_init(void)
237{ 419{
238} 420}
239 421
422struct imx233_i2c_sync_xfer_t
423{
424 struct imx233_i2c_xfer_t xfer;
425 struct semaphore sema;
426 volatile enum imx233_i2c_error_t status;
427};
428
429/* synchronous callback: record status and release semaphore */
430static void i2c_sync_callback(struct imx233_i2c_xfer_t *xfer, enum imx233_i2c_error_t status)
431{
432 struct imx233_i2c_sync_xfer_t *sxfer = (void *)xfer;
433 sxfer->status = status;
434 semaphore_release(&sxfer->sema);
435}
436
437static int i2c_sync_transfer(struct imx233_i2c_sync_xfer_t *xfer)
438{
439 semaphore_init(&xfer->sema, 1, 0);
440 /* common init */
441 xfer->xfer.next = NULL;
442 xfer->xfer.callback = &i2c_sync_callback;
443 xfer->xfer.fast_mode = true;
444 xfer->xfer.tmo_ms = 1000;
445 /* kick */
446 imx233_i2c_transfer(&xfer->xfer);
447 /* wait */
448 semaphore_wait(&xfer->sema, TIMEOUT_BLOCK);
449 return (int)xfer->status;
450}
451
240int i2c_write(int device, const unsigned char* buf, int count) 452int i2c_write(int device, const unsigned char* buf, int count)
241{ 453{
242 uint8_t addr = device; 454 struct imx233_i2c_sync_xfer_t xfer;
243 imx233_i2c_begin(); 455 xfer.xfer.dev_addr = device;
244 imx233_i2c_add(true, true, &addr, 1, false); /* start + dev addr */ 456 xfer.xfer.mode = I2C_WRITE;
245 imx233_i2c_add(false, true, (void *)buf, count, true); /* data + stop */ 457 xfer.xfer.count[0] = count;
246 return imx233_i2c_end(10); 458 xfer.xfer.data[0] = (void *)buf;
459 xfer.xfer.count[1] = 0;
460 return i2c_sync_transfer(&xfer);
247} 461}
248 462
249int i2c_read(int device, unsigned char* buf, int count) 463int i2c_read(int device, unsigned char* buf, int count)
250{ 464{
251 uint8_t addr = device | 1; 465 struct imx233_i2c_sync_xfer_t xfer;
252 imx233_i2c_begin(); 466 xfer.xfer.dev_addr = device;
253 imx233_i2c_add(true, true, &addr, 1, false); /* start + dev addr */ 467 xfer.xfer.mode = I2C_READ;
254 imx233_i2c_add(false, false, buf, count, true); /* data + stop */ 468 xfer.xfer.count[0] = 0;
255 return imx233_i2c_end(10); 469 xfer.xfer.count[1] = count;
470 xfer.xfer.data[1] = buf;
471 return i2c_sync_transfer(&xfer);
256} 472}
257 473
258int i2c_readmem(int device, int address, unsigned char* buf, int count) 474int i2c_readmem(int device, int address, unsigned char* buf, int count)
259{ 475{
260 uint8_t start[2] = {device, address}; 476 uint8_t addr = address; /* assume 1 byte */
261 uint8_t addr_rd = device | 1; 477 struct imx233_i2c_sync_xfer_t xfer;
262 imx233_i2c_begin(); 478 xfer.xfer.dev_addr = device;
263 imx233_i2c_add(true, true, start, 2, false); /* start + dev addr + addr */ 479 xfer.xfer.mode = I2C_READ;
264 imx233_i2c_add(true, true, &addr_rd, 1, false); /* start + dev addr */ 480 xfer.xfer.count[0] = 1;
265 imx233_i2c_add(false, false, buf, count, true); /* data + stop */ 481 xfer.xfer.data[0] = &addr;
266 return imx233_i2c_end(10); 482 xfer.xfer.count[1] = count;
483 xfer.xfer.data[1] = buf;
484 return i2c_sync_transfer(&xfer);
267} 485}
268 486
269int i2c_writemem(int device, int address, const unsigned char* buf, int count) 487int i2c_writemem(int device, int address, const unsigned char* buf, int count)
270{ 488{
271 uint8_t start[2] = {device, address}; 489 uint8_t addr = address; /* assume 1 byte */
272 imx233_i2c_begin(); 490 struct imx233_i2c_sync_xfer_t xfer;
273 imx233_i2c_add(true, true, start, 2, false); /* start + dev addr + addr */ 491 xfer.xfer.dev_addr = device;
274 imx233_i2c_add(false, true, (void *)buf, count, true); /* data + stop */ 492 xfer.xfer.mode = I2C_WRITE;
275 return imx233_i2c_end(10); 493 xfer.xfer.count[0] = 1;
494 xfer.xfer.data[0] = &addr;
495 xfer.xfer.count[1] = count;
496 xfer.xfer.data[1] = (void *)buf;
497 return i2c_sync_transfer(&xfer);
276} 498}
diff --git a/firmware/target/arm/imx233/i2c-imx233.h b/firmware/target/arm/imx233/i2c-imx233.h
index 263e93aa77..33e38e38da 100644
--- a/firmware/target/arm/imx233/i2c-imx233.h
+++ b/firmware/target/arm/imx233/i2c-imx233.h
@@ -24,7 +24,6 @@
24#include "cpu.h" 24#include "cpu.h"
25#include "system.h" 25#include "system.h"
26#include "system-target.h" 26#include "system-target.h"
27#include "i2c.h"
28 27
29enum imx233_i2c_error_t 28enum imx233_i2c_error_t
30{ 29{
@@ -35,14 +34,71 @@ enum imx233_i2c_error_t
35 I2C_NO_SLAVE_ACK = -4, 34 I2C_NO_SLAVE_ACK = -4,
36 I2C_SLAVE_NAK = -5, 35 I2C_SLAVE_NAK = -5,
37 I2C_BUFFER_FULL = -6, 36 I2C_BUFFER_FULL = -6,
37 I2C_SKIP = -7, /* transfer skipped before of previous error in transaction */
38}; 38};
39 39
40/** Important notes on the driver.
41 *
42 * The driver supports both synchronous and asynchronous transfers. Asynchronous
43 * transfer functions can safely be called from IRQ context. Beware that the completion
44 * callback of asynchronous transfers may be called from IRQ context.
45 *
46 * The driver supports queuing so it is safe to call several transfer functions
47 * concurrently.
48 */
49
40void imx233_i2c_init(void); 50void imx233_i2c_init(void);
41/* start building a transfer, will acquire an exclusive lock */ 51
42void imx233_i2c_begin(void); 52/** legacy API:
43/* add stage */ 53 * read/write functions return 0 on success */
44enum imx233_i2c_error_t imx233_i2c_add(bool start, bool transmit, void *buffer, unsigned size, bool stop); 54int i2c_write(int device, const unsigned char* buf, int count);
45/* end building a transfer and start the transfer */ 55int i2c_read(int device, unsigned char* buf, int count);
46enum imx233_i2c_error_t imx233_i2c_end(unsigned timeout); 56int i2c_readmem(int device, int address, unsigned char* buf, int count);
57int i2c_writemem(int device, int address, const unsigned char* buf, int count);
58
59/** Advanced API */
60struct imx233_i2c_xfer_t;
61typedef void (*imx233_i2c_cb_t)(struct imx233_i2c_xfer_t *xfer, enum imx233_i2c_error_t status);
62
63/** Transfer mode. There are currently two types of transfers, to make
64 * programming simpler:
65 * - write: write count[0] bytes from data[0], and then count[1] bytes from data[1]
66 * (if count[1] > 0). The second stage is useful to avoid allocating a single
67 * buffer to hold address + data for example.
68 * - read: write count[0] bytes from data[0], and then read count[1] bytes from data[1].
69 * If count[0] = 0 then the write stage is ignored.
70 */
71enum imx233_i2x_xfer_mode_t
72{
73 I2C_WRITE,
74 I2C_READ,
75};
76
77/** This data structure represents one transfer. The exact shape of the transfer
78 * depends on the mode.
79 * NOTE a single transfer is limited to 512 bytes of data (RX + TX)
80 * A transaction is made up of several transfers, chained together.
81 */
82struct imx233_i2c_xfer_t
83{
84 struct imx233_i2c_xfer_t *next; /* next transfer, or NULL */
85 imx233_i2c_cb_t callback; /* NULL for no callack */
86 int dev_addr; /* device address */
87 bool fast_mode; /* 400 kHz 'fast' mode or 100 kHz 'normal' mode */
88 enum imx233_i2x_xfer_mode_t mode; /* transfer mode */
89 int count[2]; /* count: depends on mode */
90 void *data[2]; /* data: depends on mode */
91 unsigned tmo_ms; /* timeout in milliseconds (0 means infinite) */
92 /* internal */
93 struct imx233_i2c_xfer_t *last; /* last in transaction */
94};
95
96/* Queue one or more tranfer. If several transfer are queued (transaction)
97 * they are guaranteed to be executed "as one" (ie without interleaving). Furthermore,
98 * if a transfer of the transfaction fails, the remaining transfers of the transactions
99 * will NOT be executed (and their callback will be called with SKIP status).
100 * Return 0 if queueing was successful. Note that the transfer may still fail,
101 * in which case the callback will have a nonzero status code. */
102void imx233_i2c_transfer(struct imx233_i2c_xfer_t *xfer);
47 103
48#endif // __I2C_IMX233_H__ 104#endif // __I2C_IMX233_H__