summaryrefslogtreecommitdiff
path: root/apps
diff options
context:
space:
mode:
authorThom Johansen <thomj@rockbox.org>2006-01-29 02:10:28 +0000
committerThom Johansen <thomj@rockbox.org>2006-01-29 02:10:28 +0000
commita8cc6a74547e6485f3aa9fe597f5d1dc176cca8a (patch)
tree4606e1a8470f699cefab39357f7f6d38984eff20 /apps
parentb0302f0cbb4674d9ff1584b87628f2bfaafa7a0a (diff)
downloadrockbox-a8cc6a74547e6485f3aa9fe597f5d1dc176cca8a.tar.gz
rockbox-a8cc6a74547e6485f3aa9fe597f5d1dc176cca8a.zip
Initial multi-band EQ support for software codec platforms. Now go start
making that user interface! git-svn-id: svn://svn.rockbox.org/rockbox/trunk@8478 a1c6a512-1295-4272-9138-f99709370657
Diffstat (limited to 'apps')
-rw-r--r--apps/SOURCES4
-rw-r--r--apps/dsp.c34
-rw-r--r--apps/eq.c226
-rw-r--r--apps/eq.h41
4 files changed, 305 insertions, 0 deletions
diff --git a/apps/SOURCES b/apps/SOURCES
index cf17bbc27c..94c081ec15 100644
--- a/apps/SOURCES
+++ b/apps/SOURCES
@@ -76,4 +76,8 @@ playback.c
76metadata.c 76metadata.c
77codecs.c 77codecs.c
78dsp.c 78dsp.c
79eq.c
80#if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
81eq_cf.S
82#endif
79#endif 83#endif
diff --git a/apps/dsp.c b/apps/dsp.c
index 19cb669a06..b2fc0ce7a2 100644
--- a/apps/dsp.c
+++ b/apps/dsp.c
@@ -19,6 +19,7 @@
19#include <inttypes.h> 19#include <inttypes.h>
20#include <string.h> 20#include <string.h>
21#include "dsp.h" 21#include "dsp.h"
22#include "eq.h"
22#include "kernel.h" 23#include "kernel.h"
23#include "playback.h" 24#include "playback.h"
24#include "system.h" 25#include "system.h"
@@ -166,10 +167,21 @@ struct crossfeed_data
166 int index; 167 int index;
167}; 168};
168 169
170/* Current setup is one lowshelf filters, three peaking filters and one
171 highshelf filter. Varying the number of shelving filters make no sense,
172 but adding peaking filters are possible. */
173struct eq_state {
174 char enabled[5]; /* Flags for active filters */
175 struct eqfilter ls;
176 struct eqfilter pk[3];
177 struct eqfilter hs;
178};
179
169static struct dsp_config dsp_conf[2] IBSS_ATTR; 180static struct dsp_config dsp_conf[2] IBSS_ATTR;
170static struct dither_data dither_data[2] IBSS_ATTR; 181static struct dither_data dither_data[2] IBSS_ATTR;
171static struct resample_data resample_data[2] IBSS_ATTR; 182static struct resample_data resample_data[2] IBSS_ATTR;
172struct crossfeed_data crossfeed_data IBSS_ATTR; 183struct crossfeed_data crossfeed_data IBSS_ATTR;
184static struct eq_state eq_data;
173 185
174static int pitch_ratio = 1000; 186static int pitch_ratio = 1000;
175 187
@@ -608,6 +620,25 @@ static void apply_crossfeed(long* src[], int count)
608} 620}
609#endif 621#endif
610 622
623/* Apply EQ filters to those bands that have got it switched on. */
624void eq_process(long **x, unsigned num)
625{
626 int i;
627 unsigned int channels = dsp->stereo_mode != STEREO_MONO ? 2 : 1;
628
629 /* filter configuration currently is 1 low shelf filter, 3 band peaking
630 filters and 1 high shelf filter, in that order.
631 */
632 if (eq_data.enabled[0])
633 eq_filter(x, &eq_data.ls, num, channels, EQ_SHELF_SHIFT);
634 for (i = 0; i < 3; i++) {
635 if (eq_data.enabled[1 + i])
636 eq_filter(x, &eq_data.pk[i], num, channels, EQ_PEAK_SHIFT);
637 }
638 if (eq_data.enabled[4])
639 eq_filter(x, &eq_data.hs, num, channels, EQ_SHELF_SHIFT);
640}
641
611/* Apply a constant gain to the samples (e.g., for ReplayGain). May update 642/* Apply a constant gain to the samples (e.g., for ReplayGain). May update
612 * the src array if gain was applied. 643 * the src array if gain was applied.
613 * Note that this must be called before the resampler. 644 * Note that this must be called before the resampler.
@@ -713,6 +744,9 @@ long dsp_process(char* dst, char* src[], long size)
713 samples = resample(tmp, samples); 744 samples = resample(tmp, samples);
714 if (dsp->crossfeed_enabled && dsp->stereo_mode != STEREO_MONO) 745 if (dsp->crossfeed_enabled && dsp->stereo_mode != STEREO_MONO)
715 apply_crossfeed(tmp, samples); 746 apply_crossfeed(tmp, samples);
747 /* TODO: Might want to wrap this with a generic eq_enabled when the
748 settings are in place */
749 eq_process(tmp, samples);
716 write_samples((short*) dst, tmp, samples); 750 write_samples((short*) dst, tmp, samples);
717 written += samples; 751 written += samples;
718 dst += samples * sizeof(short) * 2; 752 dst += samples * sizeof(short) * 2;
diff --git a/apps/eq.c b/apps/eq.c
new file mode 100644
index 0000000000..8ad886fc0c
--- /dev/null
+++ b/apps/eq.c
@@ -0,0 +1,226 @@
1/***************************************************************************
2 * __________ __ ___.
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
7 * \/ \/ \/ \/ \/
8 * $Id$
9 *
10 * Copyright (C) 2006 Thom Johansen
11 *
12 * All files in this archive are subject to the GNU General Public License.
13 * See the file COPYING in the source tree root for full license agreement.
14 *
15 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
16 * KIND, either express or implied.
17 *
18 ****************************************************************************/
19
20#include "config.h"
21#include "eq.h"
22
23/* Coef calculation taken from Audio-EQ-Cookbook.txt by Robert Bristow-Johnson.
24 Slightly faster calculation can be done by deriving forms which use tan()
25 instead of cos() and sin(), but the latter are far easier to use when doing
26 fixed point math, and performance is not a big point in the calculation part.
27 We realise the filters as a second order direct form 1 structure. Direct
28 form 1 was chosen because of better numerical properties for fixed point
29 implementations.
30 */
31
32#define DIV64(x, y, z) (long)(((long long)(x) << (z))/(y))
33/* TODO: This macro requires the EMAC unit to be in fractional mode
34 when the coef generator routines are called. If this can be guaranteeed,
35 then remove the "&& 0" below for faster coef calculation on Coldfire.
36 */
37#if defined(CPU_COLDFIRE) && !defined(SIMULATOR) && 0
38#define FRACMUL(x, y) \
39({ \
40 long t; \
41 asm volatile ("mac.l %[a], %[b], %%acc0\n\t" \
42 "movclr.l %%acc0, %[t]\n\t" \
43 : [t] "=r" (t) : [a] "r" (x), [b] "r" (y)); \
44 t; \
45})
46#else
47#define FRACMUL(x, y) ((long)(((((long long) (x)) * ((long long) (y))) >> 31)))
48#endif
49
50/* TODO: replaygain.c has some fixed point routines. perhaps we could reuse
51 them? */
52
53/* 128 sixteen bit sine samples + guard point */
54short sinetab[] = {
55 0, 1607, 3211, 4807, 6392, 7961, 9511, 11038, 12539, 14009, 15446, 16845,
56 18204, 19519, 20787, 22004, 23169, 24278, 25329, 26318, 27244, 28105, 28897,
57 29621, 30272, 30851, 31356, 31785, 32137, 32412, 32609,32727, 32767, 32727,
58 32609, 32412, 32137, 31785, 31356, 30851, 30272, 29621, 28897, 28105, 27244,
59 26318, 25329, 24278, 23169, 22004, 20787, 19519, 18204, 16845, 15446, 14009,
60 12539, 11038, 9511, 7961, 6392, 4807, 3211, 1607, 0, -1607, -3211, -4807,
61 -6392, -7961, -9511, -11038, -12539, -14009, -15446, -16845, -18204, -19519,
62 -20787, -22004, -23169, -24278, -25329, -26318, -27244, -28105, -28897,
63 -29621, -30272, -30851, -31356, -31785, -32137, -32412, -32609, -32727,
64 -32767, -32727, -32609, -32412, -32137, -31785, -31356, -30851, -30272,
65 -29621, -28897, -28105, -27244, -26318, -25329, -24278, -23169, -22004,
66 -20787, -19519, -18204, -16845, -15446, -14009, -12539, -11038, -9511,
67 -7961, -6392, -4807, -3211, -1607, 0
68};
69
70/* Good quality sine calculated by linearly interpolating
71 * a 128 sample sine table. First harmonic has amplitude of about -84 dB.
72 * phase has range from 0 to 0xffffffff, representing 0 and
73 * 2*pi respectively.
74 * Return value is a signed value from LONG_MIN to LONG_MAX, representing
75 * -1 and 1 respectively.
76 */
77static long fsin(unsigned long phase)
78{
79 unsigned int pos = phase >> 25;
80 unsigned short frac = (phase & 0x01ffffff) >> 9;
81 short diff = sinetab[pos + 1] - sinetab[pos];
82
83 return (sinetab[pos] << 16) + frac*diff;
84}
85
86static inline long fcos(unsigned long phase)
87{
88 return fsin(phase + 0xffffffff/4);
89}
90
91/* Fixed point square root via Newton-Raphson.
92 * Output is in same fixed point format as input.
93 * fracbits specifies number of fractional bits in argument.
94 */
95static long fsqrt(long a, unsigned int fracbits)
96{
97 long b = a/2 + (1 << fracbits); /* initial approximation */
98 unsigned n;
99 const unsigned iterations = 4;
100
101 for (n = 0; n < iterations; ++n)
102 b = (b + DIV64(a, b, fracbits))/2;
103
104 return b;
105}
106
107short dbtoatab[49] = {
108 2058, 2180, 2309, 2446, 2591, 2744, 2907, 3079, 3261, 3455, 3659, 3876,
109 4106, 4349, 4607, 4880, 5169, 5475, 5799, 6143, 6507, 6893, 7301, 7734,
110 8192, 8677, 9192, 9736, 10313, 10924, 11572, 12257, 12983, 13753, 14568,
111 15431, 16345, 17314, 18340, 19426, 20577, 21797, 23088, 24456, 25905, 27440,
112 29066, 30789, 32613
113};
114
115/* Function for converting dB to squared amplitude factor (A = 10^(dB/40)).
116 Range is -24 to 24 dB. If gain values outside of this is needed, the above
117 table needs to be extended.
118 Parameter format is s15.16 fixed point. Return format is s2.29 fixed point.
119 */
120static long dbtoA(long db)
121{
122 const unsigned long bias = 24 << 16;
123 unsigned short frac = (db + bias) & 0x0000ffff;
124 unsigned short pos = (db + bias) >> 16;
125 short diff = dbtoatab[pos + 1] - dbtoatab[pos];
126
127 return (dbtoatab[pos] << 16) + frac*diff;
128}
129
130/* Calculate second order section peaking filter coefficients.
131 cutoff is a value from 0 to 0xffffffff, where 0 represents 0 hz and
132 0xffffffff represents nyquist (samplerate/2).
133 Q is an unsigned 6.26 fixed point number, lower bound is artificially set
134 at 0.5.
135 db is s15.16 fixed point and describes gain/attenuation at peak freq.
136 c is a pointer where the coefs will be stored.
137 */
138void eq_pk_coefs(unsigned long cutoff, unsigned long Q, long db, long *c)
139{
140 const long one = 1 << 28; /* s3.28 */
141 const long A = dbtoA(db);
142 const long alpha = DIV64(fsin(cutoff), 2*Q, 25); /* s1.30 */
143 long a0, a1, a2; /* these are all s3.28 format */
144 long b0, b1, b2;
145
146 /* possible numerical ranges listed after each coef */
147 b0 = one + FRACMUL(alpha, A); /* [1.25..5] */
148 b1 = a1 = -2*(fcos(cutoff) >> 3); /* [-2..2] */
149 b2 = one - FRACMUL(alpha, A); /* [-3..0.75] */
150 a0 = one + DIV64(alpha, A, 27); /* [1.25..5] */
151 a2 = one - DIV64(alpha, A, 27); /* [-3..0.75] */
152
153 c[0] = DIV64(b0, a0, 28);
154 c[1] = DIV64(b1, a0, 28);
155 c[2] = DIV64(b2, a0, 28);
156 c[3] = DIV64(a1, a0, 28);
157 c[4] = DIV64(a2, a0, 28);
158}
159
160/* Calculate coefficients for lowshelf filter */
161void eq_ls_coefs(unsigned long cutoff, unsigned long Q, long db, long *c)
162{
163 const long one = 1 << 24; /* s7.24 */
164 const long A = dbtoA(db);
165 const long alpha = DIV64(fsin(cutoff), 2*Q, 25); /* s1.30 */
166 const long ap1 = (A >> 5) + one;
167 const long am1 = (A >> 5) - one;
168 const long twosqrtalpha = 2*(FRACMUL(fsqrt(A >> 5, 24), alpha) << 1);
169 long a0, a1, a2; /* these are all s7.24 format */
170 long b0, b1, b2;
171 long cs = fcos(cutoff);
172
173 b0 = FRACMUL(A, ap1 - FRACMUL(am1, cs) + twosqrtalpha) << 2;
174 b1 = FRACMUL(A, am1 - FRACMUL(ap1, cs)) << 3;
175 b2 = FRACMUL(A, ap1 - FRACMUL(am1, cs) - twosqrtalpha) << 2;
176 a0 = ap1 + FRACMUL(am1, cs) + twosqrtalpha;
177 a1 = -2*((am1 + FRACMUL(ap1, cs)));
178 a2 = ap1 + FRACMUL(am1, cs) - twosqrtalpha;
179
180 c[0] = DIV64(b0, a0, 24);
181 c[1] = DIV64(b1, a0, 24);
182 c[2] = DIV64(b2, a0, 24);
183 c[3] = DIV64(a1, a0, 24);
184 c[4] = DIV64(a2, a0, 24);
185}
186
187/* Calculate coefficients for highshelf filter */
188void eq_hs_coefs(unsigned long cutoff, unsigned long Q, long db, long *c)
189{
190 const long one = 1 << 24; /* s7.24 */
191 const long A = dbtoA(db);
192 const long alpha = DIV64(fsin(cutoff), 2*Q, 25); /* s1.30 */
193 const long ap1 = (A >> 5) + one;
194 const long am1 = (A >> 5) - one;
195 const long twosqrtalpha = 2*(FRACMUL(fsqrt(A >> 5, 24), alpha) << 1);
196 long a0, a1, a2; /* these are all s7.24 format */
197 long b0, b1, b2;
198 long cs = fcos(cutoff);
199
200 b0 = FRACMUL(A, ap1 + FRACMUL(am1, cs) + twosqrtalpha) << 2;
201 b1 = -FRACMUL(A, am1 + FRACMUL(ap1, cs)) << 3;
202 b2 = FRACMUL(A, ap1 + FRACMUL(am1, cs) - twosqrtalpha) << 2;
203 a0 = ap1 - FRACMUL(am1, cs) + twosqrtalpha;
204 a1 = 2*((am1 - FRACMUL(ap1, cs)));
205 a2 = ap1 - FRACMUL(am1, cs) - twosqrtalpha;
206
207 c[0] = DIV64(b0, a0, 24);
208 c[1] = DIV64(b1, a0, 24);
209 c[2] = DIV64(b2, a0, 24);
210 c[3] = DIV64(a1, a0, 24);
211 c[4] = DIV64(a2, a0, 24);
212}
213
214#if !defined(CPU_COLDFIRE) || defined(SIMULATOR)
215void eq_filter(long **x, struct eqfilter *f, unsigned num,
216 unsigned channels, unsigned shift)
217{
218 /* TODO: Implement generic filtering routine. */
219 (void)x;
220 (void)f;
221 (void)num;
222 (void)channels;
223 (void)shift;
224}
225#endif
226
diff --git a/apps/eq.h b/apps/eq.h
new file mode 100644
index 0000000000..f7616387b4
--- /dev/null
+++ b/apps/eq.h
@@ -0,0 +1,41 @@
1/***************************************************************************
2 * __________ __ ___.
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
7 * \/ \/ \/ \/ \/
8 * $Id$
9 *
10 * Copyright (C) 2006 Thom Johansen
11 *
12 * All files in this archive are subject to the GNU General Public License.
13 * See the file COPYING in the source tree root for full license agreement.
14 *
15 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
16 * KIND, either express or implied.
17 *
18 ****************************************************************************/
19
20#ifndef _EQ_H
21#define _EQ_H
22
23/* These depend on the fixed point formats used by the different filter types
24 and need to be changed when they change.
25 */
26#define EQ_PEAK_SHIFT 3
27#define EQ_SHELF_SHIFT 7
28
29struct eqfilter {
30 long coefs[5]; /* Order is b0, b1, b2, a1, a2 */
31 long history[2][4];
32};
33
34void eq_pk_coefs(unsigned long cutoff, unsigned long Q, long db, long *c);
35void eq_ls_coefs(unsigned long cutoff, unsigned long Q, long db, long *c);
36void eq_hs_coefs(unsigned long cutoff, unsigned long Q, long db, long *c);
37void eq_filter(long **x, struct eqfilter *f, unsigned num,
38 unsigned samples, unsigned shift);
39
40#endif
41