From c876d3bbefe0dc00c27ca0c12d29da5874946962 Mon Sep 17 00:00:00 2001 From: Dominik Riebeling Date: Wed, 15 Dec 2021 21:04:28 +0100 Subject: rbutil: Merge rbutil with utils folder. rbutil uses several components from the utils folder, and can be considered part of utils too. Having it in a separate folder is an arbitrary split that doesn't help anymore these days, so merge them. This also allows other utils to easily use libtools.make without the need to navigate to a different folder. Change-Id: I3fc2f4de19e3e776553efb5dea5f779dfec0dc21 --- utils/sansapatcher/sansapatcher.c | 975 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 975 insertions(+) create mode 100644 utils/sansapatcher/sansapatcher.c (limited to 'utils/sansapatcher/sansapatcher.c') diff --git a/utils/sansapatcher/sansapatcher.c b/utils/sansapatcher/sansapatcher.c new file mode 100644 index 0000000000..e3b105dcca --- /dev/null +++ b/utils/sansapatcher/sansapatcher.c @@ -0,0 +1,975 @@ +/*************************************************************************** + * __________ __ ___. + * Open \______ \ ____ ____ | | _\_ |__ _______ ___ + * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / + * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < + * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ + * \/ \/ \/ \/ \/ + * $Id$ + * + * Copyright (C) 2006-2007 Dave Chapman + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY + * KIND, either express or implied. + * + ****************************************************************************/ + +#include +#include +#include +#include +#include +#include +#include +#include + +#include "sansaio.h" +#include "sansapatcher.h" + +/* The offset of the MI4 image header in the firmware partition */ +#define PPMI_OFFSET 0x80000 +#define NVPARAMS_OFFSET 0x780000 +#define NVPARAMS_SIZE (0x80000-0x200) + +int sansa_verbose = 0; + +/* Windows requires the buffer for disk I/O to be aligned in memory on a + multiple of the disk volume size - so we use a single global variable + and initialise it with sansa_alloc_buf() in main(). +*/ + +static off_t filesize(int fd) { + struct stat buf; + + if (fstat(fd,&buf) < 0) { + perror("[ERR] Checking filesize of input file"); + return -1; + } else { + return(buf.st_size); + } +} + +/* Partition table parsing code taken from Rockbox */ + +#define MAX_SECTOR_SIZE 2048 +#define SECTOR_SIZE 512 + +static inline int32_t le2int(const unsigned char* buf) +{ + int32_t res = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; + + return res; +} + +static inline uint32_t le2uint(const unsigned char* buf) +{ + uint32_t res = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; + + return res; +} + +static inline void int2le(unsigned int val, unsigned char* addr) +{ + addr[0] = val & 0xFF; + addr[1] = (val >> 8) & 0xff; + addr[2] = (val >> 16) & 0xff; + addr[3] = (val >> 24) & 0xff; +} + +#define BYTES2INT32(array,pos)\ + ((long)array[pos] | ((long)array[pos+1] << 8 ) |\ + ((long)array[pos+2] << 16 ) | ((long)array[pos+3] << 24 )) + +int sansa_read_partinfo(struct sansa_t* sansa, int silent) +{ + int i; + unsigned long count; + + count = sansa_read(sansa,sansa->sectorbuf, sansa->sector_size); + + if (count <= 0) { + sansa_print_error(" Error reading from disk: "); + return -1; + } + + if ((sansa->sectorbuf[510] == 0x55) && (sansa->sectorbuf[511] == 0xaa)) { + /* parse partitions */ + for ( i = 0; i < 4; i++ ) { + unsigned char* ptr = sansa->sectorbuf + 0x1be + 16*i; + sansa->pinfo[i].type = ptr[4]; + sansa->pinfo[i].start = BYTES2INT32(ptr, 8); + sansa->pinfo[i].size = BYTES2INT32(ptr, 12); + + /* extended? */ + if ( sansa->pinfo[i].type == 5 ) { + /* not handled yet */ + } + } + } else if ((sansa->sectorbuf[0] == 'E') && (sansa->sectorbuf[1] == 'R')) { + if (!silent) fprintf(stderr,"[ERR] Bad boot sector signature\n"); + return -1; + } + + /* Calculate the starting position of the firmware partition */ + sansa->start = (loff_t)sansa->pinfo[1].start*(loff_t)sansa->sector_size; + return 0; +} + +/* NOTE: memmem implementation copied from glibc-2.2.4 - it's a GNU + extension and is not universally. In addition, early versions of + memmem had a serious bug - the meaning of needle and haystack were + reversed. */ + +/* Copyright (C) 1991,92,93,94,96,97,98,2000 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, write to the Free + Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA + 02111-1307 USA. */ + +/* Return the first occurrence of NEEDLE in HAYSTACK. */ +static void * +sansa_memmem (haystack, haystack_len, needle, needle_len) + const void *haystack; + size_t haystack_len; + const void *needle; + size_t needle_len; +{ + const char *begin; + const char *const last_possible + = (const char *) haystack + haystack_len - needle_len; + + if (needle_len == 0) + /* The first occurrence of the empty string is deemed to occur at + the beginning of the string. */ + return (void *) haystack; + + /* Sanity check, otherwise the loop might search through the whole + memory. */ + if (__builtin_expect (haystack_len < needle_len, 0)) + return NULL; + + for (begin = (const char *) haystack; begin <= last_possible; ++begin) + if (begin[0] == ((const char *) needle)[0] && + !memcmp ((const void *) &begin[1], + (const void *) ((const char *) needle + 1), + needle_len - 1)) + return (void *) begin; + + return NULL; +} + +/* + * CRC32 implementation taken from: + * + * efone - Distributed internet phone system. + * + * (c) 1999,2000 Krzysztof Dabrowski + * (c) 1999,2000 ElysiuM deeZine + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + * + */ + +/* crc_tab[] -- this crcTable is being build by chksum_crc32GenTab(). + * so make sure, you call it before using the other + * functions! + */ +static unsigned int crc_tab[256]; + +/* chksum_crc() -- to a given block, this one calculates the + * crc32-checksum until the length is + * reached. the crc32-checksum will be + * the result. + */ +static unsigned int chksum_crc32 (const unsigned char *block, unsigned int length) +{ + register unsigned long crc; + unsigned long i; + + crc = 0; + for (i = 0; i < length; i++) + { + crc = ((crc >> 8) & 0x00FFFFFF) ^ crc_tab[(crc ^ *block++) & 0xFF]; + } + return (crc); +} + +/* chksum_crc32gentab() -- to a global crc_tab[256], this one will + * calculate the crcTable for crc32-checksums. + * it is generated to the polynom [..] + */ + +static void chksum_crc32gentab (void) +{ + unsigned long crc, poly; + int i, j; + + poly = 0xEDB88320L; + for (i = 0; i < 256; i++) + { + crc = i; + for (j = 8; j > 0; j--) + { + if (crc & 1) + { + crc = (crc >> 1) ^ poly; + } + else + { + crc >>= 1; + } + } + crc_tab[i] = crc; + } +} + +/* Known keys for Sansa E200 and C200 firmwares: */ +#define NUM_KEYS ((int)(sizeof(keys)/sizeof(keys[0]))) +static const uint32_t keys[][4] = { + { 0xe494e96e, 0x3ee32966, 0x6f48512b, 0xa93fbb42 }, /* "sansa" */ + { 0xd7b10538, 0xc662945b, 0x1b3fce68, 0xf389c0e6 }, /* "sansa_gh" */ + { 0x1d29ddc0, 0x2579c2cd, 0xce339e1a, 0x75465dfe }, /* sansa 103 */ + + { 0x2a7968de, 0x15127979, 0x142e60a7, 0xe49c1893 }, /* c200 1.00.03 */ + { 0xbf2d06fa, 0xf0e23d59, 0x29738132, 0xe2d04ca7 }, /* c200 1.00.04 and up*/ + { 0xa913d139, 0xf842f398, 0x3e03f1a6, 0x060ee012 }, /* c200 1.01.05 and up*/ + { 0x0fe92902, 0xe8cc0f89, 0x6ff568ba, 0x1eff5161 }, /* c200 1.01.07 */ +}; + +/* + +tea_decrypt() from http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm + +"Following is an adaptation of the reference encryption and decryption +routines in C, released into the public domain by David Wheeler and +Roger Needham:" + +*/ + +/* NOTE: The mi4 version of TEA uses a different initial value to sum compared + to the reference implementation and the main loop is 8 iterations, not + 32. +*/ + +static void tea_decrypt(uint32_t* v0, uint32_t* v1, const uint32_t* k) { + uint32_t sum=0xF1BBCDC8, i; /* set up */ + uint32_t delta=0x9E3779B9; /* a key schedule constant */ + uint32_t k0=k[0], k1=k[1], k2=k[2], k3=k[3]; /* cache key */ + for(i=0; i<8; i++) { /* basic cycle start */ + *v1 -= ((*v0<<4) + k2) ^ (*v0 + sum) ^ ((*v0>>5) + k3); + *v0 -= ((*v1<<4) + k0) ^ (*v1 + sum) ^ ((*v1>>5) + k1); + sum -= delta; /* end cycle */ + } +} + +/* mi4 files are encrypted in 64-bit blocks (two little-endian 32-bit + integers) and the key is incremented after each block + */ + +static void tea_decrypt_buf(const unsigned char* src, unsigned char* dest, + size_t n, const uint32_t * initial_key) +{ + uint32_t v0, v1; + unsigned int i; + uint32_t key[4]; + + memcpy(key, initial_key, sizeof(key)); + for (i = 0; i < (n / 8); i++) { + v0 = le2int(src); + v1 = le2int(src+4); + + tea_decrypt(&v0, &v1, key); + + int2le(v0, dest); + int2le(v1, dest+4); + + src += 8; + dest += 8; + + /* Now increment the key */ + key[0]++; + if (key[0]==0) { + key[1]++; + if (key[1]==0) { + key[2]++; + if (key[2]==0) { + key[3]++; + } + } + } + } +} + +static int get_mi4header(const unsigned char* buf,struct mi4header_t* mi4header) +{ + if (memcmp(buf,"PPOS",4)!=0) + return -1; + + mi4header->version = le2int(buf+0x04); + mi4header->length = le2int(buf+0x08); + mi4header->crc32 = le2int(buf+0x0c); + mi4header->enctype = le2int(buf+0x10); + mi4header->mi4size = le2int(buf+0x14); + mi4header->plaintext = le2int(buf+0x18); + + return 0; +} + +static int set_mi4header(unsigned char* buf,const struct mi4header_t* mi4header) +{ + if (memcmp(buf,"PPOS",4)!=0) + return -1; + + int2le(mi4header->version ,buf+0x04); + int2le(mi4header->length ,buf+0x08); + int2le(mi4header->crc32 ,buf+0x0c); + int2le(mi4header->enctype ,buf+0x10); + int2le(mi4header->mi4size ,buf+0x14); + int2le(mi4header->plaintext ,buf+0x18); + + /* Add a dummy DSA signature */ + memset(buf+0x1c,0,40); + buf[0x2f] = 1; + + return 0; +} + +static int sansa_seek_and_read(struct sansa_t* sansa, loff_t pos, unsigned char* buf, int nbytes) +{ + int n; + + if (sansa_seek(sansa, pos) < 0) { + return -1; + } + + if ((n = sansa_read(sansa,buf,nbytes)) < 0) { + return -1; + } + + if (n < nbytes) { + fprintf(stderr,"[ERR] Short read - requested %d bytes, received %d\n", + nbytes,n); + return -1; + } + + return 0; +} + + +/* We identify an E200 based on the following criteria: + + 1) Exactly two partitions; + 2) First partition is type "W95 FAT32" (0x0b or 0x0c); + 3) Second partition is type "OS/2 hidden C: drive" (0x84); + 4) The "PPBL" string appears at offset 0 in the 2nd partition; + 5) The "PPMI" string appears at offset PPMI_OFFSET in the 2nd partition. +*/ + +int is_sansa(struct sansa_t* sansa) +{ + struct mi4header_t mi4header; + int ppmi_length; + int ppbl_length; + + /* Check partition layout */ + if (((sansa->pinfo[0].type != 0x06) && + (sansa->pinfo[0].type != 0x0b) && + (sansa->pinfo[0].type != 0x0c) && + (sansa->pinfo[0].type != 0x0e)) || + (sansa->pinfo[1].type != 0x84) || + (sansa->pinfo[2].type != 0x00) || + (sansa->pinfo[3].type != 0x00)) { + /* Bad partition layout, abort */ + return -1; + } + + /* Check Bootloader header */ + if (sansa_seek_and_read(sansa, sansa->start, sansa->sectorbuf, 0x200) < 0) { + return -2; + } + if (memcmp(sansa->sectorbuf,"PPBL",4)!=0) { + /* No bootloader header, abort */ + return -4; + } + ppbl_length = (le2int(sansa->sectorbuf+4) + 0x1ff) & ~0x1ff; + + /* Sanity/safety check - the bootloader can't be larger than PPMI_OFFSET */ + if (ppbl_length > PPMI_OFFSET) + { + return -5; + } + + /* Load Sansa bootloader and check for "Sansa C200" magic string */ + if (sansa_seek_and_read(sansa, sansa->start + 0x200, sansa->sectorbuf, ppbl_length) < 0) { + fprintf(stderr,"[ERR] Seek and read to 0x%08"PRIx64" in is_sansa failed.\n", + sansa->start+0x200); + return -6; + } + if (sansa_memmem(sansa->sectorbuf, ppbl_length, "Sansa C200", 10) != NULL) { + /* C200 */ + sansa->targetname="c200"; + } else { + /* E200 */ + sansa->targetname="e200"; + } + + /* Check Main firmware header */ + if (sansa_seek_and_read(sansa, sansa->start+PPMI_OFFSET, sansa->sectorbuf, 0x200) < 0) { + fprintf(stderr,"[ERR] Seek to 0x%"PRIx64" in is_sansa failed.\n", + sansa->start+PPMI_OFFSET); + return -5; + } + if (memcmp(sansa->sectorbuf,"PPMI",4)!=0) { + /* No bootloader header, abort */ + return -7; + } + ppmi_length = le2int(sansa->sectorbuf+4); + + /* Check main mi4 file header */ + if (sansa_seek_and_read(sansa, sansa->start+PPMI_OFFSET+0x200, sansa->sectorbuf, 0x200) < 0) { + fprintf(stderr,"[ERR] Seek to 0x%"PRIx64" in is_sansa failed.\n", + sansa->start+PPMI_OFFSET+0x200); + return -5; + } + + if (get_mi4header(sansa->sectorbuf,&mi4header) < 0) { + fprintf(stderr,"[ERR] Invalid mi4header\n"); + return -6; + } + + /* Some sanity checks: + + 1) Main MI4 image without RBBL and < 100000 bytes -> old install + 2) Main MI4 image with RBBL but no second image -> old install + */ + + sansa->hasoldbootloader = 0; + if (memcmp(sansa->sectorbuf+0x1f8,"RBBL",4)==0) { + /* Look for an original firmware after the first image */ + if (sansa_seek_and_read(sansa, + sansa->start + PPMI_OFFSET + 0x200 + ppmi_length, + sansa->sectorbuf, 512) < 0) { + return -7; + } + + if (get_mi4header(sansa->sectorbuf,&mi4header)!=0) { + fprintf(stderr,"[ERR] No original firmware found\n"); + sansa->hasoldbootloader = 1; + } + } else if (mi4header.mi4size < 100000) { + fprintf(stderr,"[ERR] Old bootloader found\n"); + sansa->hasoldbootloader = 1; + } + + return 0; +} + +int sansa_scan(struct sansa_t* sansa) +{ + int i; + int n = 0; + char last_disk[4096]; + int denied = 0; + int result; + + printf("[INFO] Scanning disk devices...\n"); + + for (i = 0; i <= 25 ; i++) { +#ifdef __WIN32__ + sprintf(sansa->diskname,"\\\\.\\PhysicalDrive%d",i); +#elif defined(linux) || defined (__linux) + sprintf(sansa->diskname,"/dev/sd%c",'a'+i); +#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) \ + || defined(__bsdi__) || defined(__DragonFly__) + sprintf(sansa->diskname,"/dev/da%d",i); +#elif defined(__APPLE__) && defined(__MACH__) + sprintf(sansa->diskname,"/dev/disk%d",i); +#else +#error No disk paths defined for this platform +#endif + if ((result = sansa_open(sansa, 1)) < 0) { + if(result == -2) { + denied++; + } + sansa_close(sansa); + continue; + } + + if (sansa_read_partinfo(sansa,1) < 0) { + sansa_close(sansa); + continue; + } + + if (is_sansa(sansa) < 0) { + sansa_close(sansa); + continue; + } + +#ifdef __WIN32__ + printf("[INFO] %s found - disk device %d\n",sansa->targetname, i); +#else + printf("[INFO] %s found - %s\n",sansa->targetname, sansa->diskname); +#endif + n++; + strcpy(last_disk,sansa->diskname); + sansa_close(sansa); + } + + if (n==1) { + /* Remember the disk name */ + strcpy(sansa->diskname,last_disk); + } + else if (n == 0 && denied) { + printf("[ERR] FATAL: Permission denied on %d device(s) and no sansa detected.\n", denied); +#ifdef __WIN32__ + printf("[ERR] You need to run this program with administrator priviledges!\n"); +#else + printf("[ERR] You need permissions for raw disc access for this program to work!\n"); +#endif + } + + return (n == 0 && denied) ? -1 : n; +} + +/* Prepare original firmware for writing to the firmware partition by decrypting + and updating the header */ +static int prepare_original_firmware(struct sansa_t* sansa, unsigned char* buf, struct mi4header_t* mi4header) +{ + unsigned char* tmpbuf; + int i; + int key_found; + + get_mi4header(buf,mi4header); + +#if 0 + printf("mi4header->version =0x%08x\n",mi4header->version); + printf("mi4header->length =0x%08x\n",mi4header->length); + printf("mi4header->crc32 =0x%08x\n",mi4header->crc32); + printf("mi4header->enctype =0x%08x\n",mi4header->enctype); + printf("mi4header->mi4size =0x%08x\n",mi4header->mi4size); + printf("mi4header->plaintext =0x%08x\n",mi4header->plaintext); +#endif + + /* Decrypt anything that needs decrypting. */ + if (mi4header->plaintext < mi4header->mi4size - 0x200) { + /* TODO: Check different keys */ + tmpbuf=malloc(mi4header->mi4size-(mi4header->plaintext+0x200)); + if (tmpbuf==NULL) { + fprintf(stderr,"[ERR] Can not allocate memory\n"); + return -1; + } + + key_found=0; + for (i=0; i < NUM_KEYS && !key_found ; i++) { + tea_decrypt_buf(buf+(mi4header->plaintext+0x200), + tmpbuf, + mi4header->mi4size-(mi4header->plaintext+0x200), + keys[i]); + key_found = (le2uint(tmpbuf+mi4header->length-mi4header->plaintext-4) == 0xaa55aa55); + } + + if (key_found) { + memcpy(buf+(mi4header->plaintext+0x200),tmpbuf,mi4header->mi4size-(mi4header->plaintext+0x200)); + free(tmpbuf); + } else { + fprintf(stderr,"[ERR] Failed to decrypt image, aborting\n"); + free(tmpbuf); + return -1; + } + } + + /* Increase plaintext value to full file */ + mi4header->plaintext = mi4header->mi4size - 0x200; + + /* Update CRC checksum */ + chksum_crc32gentab (); + mi4header->crc32 = chksum_crc32(buf+0x200,mi4header->mi4size-0x200); + + set_mi4header(buf,mi4header); + + /* Add Rockbox-specific header */ + memcpy(buf+0x1f8,"RBOF",4); + memcpy(buf+0x1fc,sansa->targetname,4); + + return 0; +} + +static int load_original_firmware(struct sansa_t* sansa, unsigned char* buf, struct mi4header_t* mi4header) +{ + int ppmi_length; + int n; + + /* Read 512 bytes from PPMI_OFFSET - the PPMI header plus the mi4 header */ + if (sansa_seek_and_read(sansa, sansa->start + PPMI_OFFSET, buf, 512) < 0) { + return -1; + } + + /* No need to check PPMI magic - it's done during init to confirm + this is an E200 */ + ppmi_length = le2int(buf+4); + + /* Firstly look for an original firmware after the first image */ + if (sansa_seek_and_read(sansa, sansa->start + PPMI_OFFSET + 0x200 + ppmi_length, buf, 512) < 0) { + return -1; + } + + if (get_mi4header(buf,mi4header)==0) { + /* We have a valid MI4 file after a bootloader, so we use this. */ + if ((n = sansa_seek_and_read(sansa, + sansa->start + PPMI_OFFSET + 0x200 + ppmi_length, + buf, mi4header->mi4size)) < 0) { + return -1; + } + } else { + /* No valid MI4 file, so read the first image. */ + if ((n = sansa_seek_and_read(sansa, + sansa->start + PPMI_OFFSET + 0x200, + buf, ppmi_length)) < 0) { + return -1; + } + } + return prepare_original_firmware(sansa, buf, mi4header); +} + +int sansa_read_firmware(struct sansa_t* sansa, const char* filename) +{ + int res; + int outfile; + struct mi4header_t mi4header; + + res = load_original_firmware(sansa,sansa->sectorbuf,&mi4header); + if (res < 0) + return res; + + outfile = open(filename,O_CREAT|O_TRUNC|O_WRONLY|O_BINARY,0666); + if (outfile < 0) { + fprintf(stderr,"[ERR] Couldn't open file %s\n",filename); + return -1; + } + + res = write(outfile,sansa->sectorbuf,mi4header.mi4size); + if (res != (int)mi4header.mi4size) { + fprintf(stderr,"[ERR] Write error - %d\n", res); + return -1; + } + close(outfile); + + return 0; +} + +unsigned int sansa_read_bootloader(struct sansa_t* sansa, const char* filename, unsigned char** bl_buffer) +{ + /* Step 1 - read bootloader into RAM. */ + int infile; + unsigned int n; + unsigned int len; + infile=open(filename,O_RDONLY|O_BINARY); + if (infile < 0) { + fprintf(stderr,"[ERR] Couldn't open input file %s\n",filename); + return 0; + } + + len = filesize(infile); + + unsigned char* b = malloc(len); + if (b == NULL) { + fprintf(stderr,"[ERR] Could not allocate memory for bootloader\n"); + close(infile); + return 0; + } + + n = read(infile,b,len); + close(infile); + if (n < len) { + fprintf(stderr,"[ERR] Short read - requested %d bytes, received %d\n" + ,len,n); + return 0; + } + + if (memcmp(b+0x1f8,"RBBL",4)!=0) { + fprintf(stderr,"[ERR] %s is not a Rockbox bootloader, aborting.\n", + filename); + return 0; + } + if (memcmp(b+0x1fc,sansa->targetname,4)!=0) { + fprintf(stderr,"[ERR] %s is not a Rockbox bootloader for %s, aborting.\n", + filename, sansa->targetname); + return 0; + } + *bl_buffer = b; + return len; +} + +int sansa_add_bootloader(struct sansa_t* sansa, const unsigned char* bootloader, const unsigned int bl_length) +{ + int res; + struct mi4header_t mi4header; + int length; + int n; + + /* Create PPMI header */ + memset(sansa->sectorbuf,0,0x200); + memcpy(sansa->sectorbuf,"PPMI",4); + int2le(bl_length, sansa->sectorbuf+4); + int2le(0x00020000, sansa->sectorbuf+8); + + /* copy bootloader to sansa->sectorbuf+0x200 */ + memcpy(sansa->sectorbuf+0x200,bootloader,bl_length); + + /* Load original firmware from Sansa to the space after the bootloader */ + res = load_original_firmware(sansa,sansa->sectorbuf+0x200+bl_length,&mi4header); + if (res < 0) + return res; + + /* Now write the whole thing back to the Sansa */ + + if (sansa_seek(sansa, sansa->start+PPMI_OFFSET) < 0) { + fprintf(stderr,"[ERR] Seek to 0x%08"PRIx64" in add_bootloader failed.\n", + sansa->start+PPMI_OFFSET); + return -5; + } + + length = 0x200 + bl_length + mi4header.mi4size; + + n=sansa_write(sansa, length); + if (n < length) { + fprintf(stderr,"[ERR] Short write in add_bootloader\n"); + return -6; + } + + return 0; +} + +int sansa_delete_bootloader(struct sansa_t* sansa) +{ + int res; + struct mi4header_t mi4header; + int n; + int length; + + /* Load original firmware from Sansa to sansa->sectorbuf+0x200 */ + res = load_original_firmware(sansa,sansa->sectorbuf+0x200,&mi4header); + if (res < 0) + return res; + + /* Create PPMI header */ + memset(sansa->sectorbuf,0,0x200); + memcpy(sansa->sectorbuf,"PPMI",4); + int2le(mi4header.mi4size, sansa->sectorbuf+4); + int2le(0x00020000, sansa->sectorbuf+8); + + /* Now write the whole thing back to the Sansa */ + + if (sansa_seek(sansa, sansa->start+PPMI_OFFSET) < 0) { + fprintf(stderr,"[ERR] Seek to 0x%08"PRIx64" in add_bootloader failed.\n", + sansa->start+PPMI_OFFSET); + return -5; + } + + length = 0x200 + mi4header.mi4size; + + n=sansa_write(sansa, length); + if (n < length) { + fprintf(stderr,"[ERR] Short write in delete_bootloader\n"); + return -6; + } + + return 0; +} + +/** List number of MI4 images on the player, return number. + */ +int sansa_list_images(struct sansa_t* sansa) +{ + struct mi4header_t mi4header; + loff_t ppmi_length; + int num = 0; + + /* Check Main firmware header */ + if (sansa_seek_and_read(sansa, sansa->start+PPMI_OFFSET, sansa->sectorbuf, 0x200) < 0) { + return 0; + } + + ppmi_length = le2int(sansa->sectorbuf+4); + + printf("[INFO] Image 1 - %"PRIu64" bytes\n",ppmi_length); + num = 1; + + /* Look for an original firmware after the first image */ + if (sansa_seek_and_read(sansa, sansa->start + PPMI_OFFSET + 0x200 + ppmi_length, sansa->sectorbuf, 512) < 0) { + return 0; + } + + if (get_mi4header(sansa->sectorbuf,&mi4header)==0) { + printf("[INFO] Image 2 - %d bytes\n",mi4header.mi4size); + num = 2; + } + return num; +} + +int sansa_update_of(struct sansa_t* sansa, const char* filename) +{ + int n; + int infile = -1; /* Prevent an erroneous "may be used uninitialised" gcc warning */ + int of_length = 0; /* Keep gcc happy when building for rbutil */ + int ppmi_length; + struct mi4header_t mi4header; + unsigned char buf[512]; + + /* Step 1 - check we have an OF on the Sansa to upgrade. We expect the + Rockbox bootloader to be installed and the OF to be after it on disk. */ + + /* Read 512 bytes from PPMI_OFFSET - the PPMI header */ + if (sansa_seek_and_read(sansa, sansa->start + PPMI_OFFSET, + buf, 512) < 0) { + return -1; + } + + /* No need to check PPMI magic - it's done during init to confirm + this is an E200 */ + ppmi_length = le2int(buf+4); + + /* Look for an original firmware after the first image */ + if (sansa_seek_and_read(sansa, sansa->start+PPMI_OFFSET+0x200+ppmi_length, + buf, 512) < 0) { + return -1; + } + + if (get_mi4header(buf,&mi4header)!=0) { + /* We don't have a valid MI4 file after a bootloader, so do nothing. */ + fprintf(stderr,"[ERR] No original firmware found at 0x%08"PRIx64"\n", + sansa->start+PPMI_OFFSET+0x200+ppmi_length); + return -1; + } + + /* Step 2 - read OF into RAM. */ + infile=open(filename,O_RDONLY|O_BINARY); + if (infile < 0) { + fprintf(stderr,"[ERR] Couldn't open input file %s\n",filename); + return -1; + } + + of_length = filesize(infile); + + /* Load original firmware from file */ + memset(sansa->sectorbuf,0,0x200); + n = read(infile,sansa->sectorbuf,of_length); + close(infile); + if (n < of_length) { + fprintf(stderr,"[ERR] Short read - requested %d bytes, received %d\n" + , of_length, n); + return -1; + } + + /* Check we have a valid MI4 file. */ + if (get_mi4header(sansa->sectorbuf,&mi4header)!=0) { + fprintf(stderr,"[ERR] %s is not a valid mi4 file\n",filename); + return -1; + } + + /* Decrypt and build the header */ + if(prepare_original_firmware(sansa, sansa->sectorbuf, &mi4header)!=0){ + fprintf(stderr,"[ERR] Unable to build decrypted mi4 from %s\n" + ,filename); + return -1; + } + + /* Step 3 - write the OF to the Sansa */ + if (sansa_seek(sansa, sansa->start+PPMI_OFFSET+0x200+ppmi_length) < 0) { + fprintf(stderr,"[ERR] Seek to 0x%08"PRIx64" in sansa_update_of failed.\n", + sansa->start+PPMI_OFFSET+0x200+ppmi_length); + return -1; + } + + n=sansa_write(sansa, of_length); + if (n < of_length) { + fprintf(stderr,"[ERR] Short write in sansa_update_of\n"); + return -1; + } + + /* Step 4 - zero out the nvparams section - we have to do this or we end up + with multiple copies of the nvparams data and don't know which one to + work with for the database rebuild disabling trick in our bootloader */ + if (strcmp(sansa->targetname,"e200") == 0) { + printf("[INFO] Resetting Original Firmware settings\n"); + if (sansa_seek(sansa, sansa->start+NVPARAMS_OFFSET+0x200) < 0) { + fprintf(stderr,"[ERR] Seek to 0x%08"PRIx64" in sansa_update_of failed.\n", + sansa->start+NVPARAMS_OFFSET+0x200); + return -1; + } + + memset(sansa->sectorbuf,0,NVPARAMS_SIZE); + n=sansa_write(sansa, NVPARAMS_SIZE); + if (n < NVPARAMS_SIZE) { + fprintf(stderr,"[ERR] Short write in sansa_update_of\n"); + return -1; + } + } + + return 0; +} + +/* Update the PPBL (bootloader) image in the hidden firmware partition */ +int sansa_update_ppbl(struct sansa_t* sansa, const char* filename) +{ + int n; + int infile = -1; /* Prevent an erroneous "may be used uninitialised" gcc warning */ + int ppbl_length = 0; /* Keep gcc happy when building for rbutil */ + + /* Step 1 - read bootloader into RAM. */ + infile=open(filename,O_RDONLY|O_BINARY); + if (infile < 0) { + fprintf(stderr,"[ERR] Couldn't open input file %s\n",filename); + return -1; + } + + ppbl_length = filesize(infile); + + n = read(infile,sansa->sectorbuf+0x200,ppbl_length); + close(infile); + if (n < ppbl_length) { + fprintf(stderr,"[ERR] Short read - requested %d bytes, received %d\n", ppbl_length, n); + return -1; + } + + /* Step 2 - Build the header */ + memset(sansa->sectorbuf,0,0x200); + memcpy(sansa->sectorbuf,"PPBL",4); + int2le(ppbl_length, sansa->sectorbuf+4); + int2le(0x00010000, sansa->sectorbuf+8); + + /* Step 3 - write the bootloader to the Sansa */ + if (sansa_seek(sansa, sansa->start) < 0) { + fprintf(stderr,"[ERR] Seek to 0x%08"PRIx64" in sansa_update_ppbl failed.\n", sansa->start); + return -1; + } + + n=sansa_write(sansa, ppbl_length + 0x200); + if (n < (ppbl_length+0x200)) { + fprintf(stderr,"[ERR] Short write in sansa_update_ppbl\n"); + return -1; + } + + return 0; +} + -- cgit v1.2.3