From 881746789a489fad85aae8317555f73dbe261556 Mon Sep 17 00:00:00 2001 From: Franklin Wei Date: Sat, 29 Apr 2017 18:21:56 -0400 Subject: puzzles: refactor and resync with upstream This brings puzzles up-to-date with upstream revision 2d333750272c3967cfd5cd3677572cddeaad5932, though certain changes made by me, including cursor-only Untangle and some compilation fixes remain. Upstream code has been moved to its separate subdirectory and future syncs can be done by simply copying over the new sources. Change-Id: Ia6506ca5f78c3627165ea6791d38db414ace0804 --- apps/plugins/puzzles/src/twiddle.c | 1319 ++++++++++++++++++++++++++++++++++++ 1 file changed, 1319 insertions(+) create mode 100644 apps/plugins/puzzles/src/twiddle.c (limited to 'apps/plugins/puzzles/src/twiddle.c') diff --git a/apps/plugins/puzzles/src/twiddle.c b/apps/plugins/puzzles/src/twiddle.c new file mode 100644 index 0000000000..6e05f4ddec --- /dev/null +++ b/apps/plugins/puzzles/src/twiddle.c @@ -0,0 +1,1319 @@ +/* + * twiddle.c: Puzzle involving rearranging a grid of squares by + * rotating subsquares. Adapted and generalised from a + * door-unlocking puzzle in Metroid Prime 2 (the one in the Main + * Gyro Chamber). + */ + +#include +#include +#include +#include +#include +#include + +#include "puzzles.h" + +#define PREFERRED_TILE_SIZE 48 +#define TILE_SIZE (ds->tilesize) +#define BORDER (TILE_SIZE / 2) +#define HIGHLIGHT_WIDTH (TILE_SIZE / 20) +#define COORD(x) ( (x) * TILE_SIZE + BORDER ) +#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 ) + +#define ANIM_PER_BLKSIZE_UNIT 0.13F +#define FLASH_FRAME 0.13F + +enum { + COL_BACKGROUND, + COL_TEXT, + COL_HIGHLIGHT, + COL_HIGHLIGHT_GENTLE, + COL_LOWLIGHT, + COL_LOWLIGHT_GENTLE, + COL_HIGHCURSOR, COL_LOWCURSOR, + NCOLOURS +}; + +struct game_params { + int w, h, n; + int rowsonly; + int orientable; + int movetarget; +}; + +struct game_state { + int w, h, n; + int orientable; + int *grid; + int completed; + int used_solve; /* used to suppress completion flash */ + int movecount, movetarget; + int lastx, lasty, lastr; /* coordinates of last rotation */ +}; + +static game_params *default_params(void) +{ + game_params *ret = snew(game_params); + + ret->w = ret->h = 3; + ret->n = 2; + ret->rowsonly = ret->orientable = FALSE; + ret->movetarget = 0; + + return ret; +} + + +static void free_params(game_params *params) +{ + sfree(params); +} + +static game_params *dup_params(const game_params *params) +{ + game_params *ret = snew(game_params); + *ret = *params; /* structure copy */ + return ret; +} + +static int game_fetch_preset(int i, char **name, game_params **params) +{ + static struct { + char *title; + game_params params; + } presets[] = { + { "3x3 rows only", { 3, 3, 2, TRUE, FALSE } }, + { "3x3 normal", { 3, 3, 2, FALSE, FALSE } }, + { "3x3 orientable", { 3, 3, 2, FALSE, TRUE } }, + { "4x4 normal", { 4, 4, 2, FALSE } }, + { "4x4 orientable", { 4, 4, 2, FALSE, TRUE } }, + { "4x4, rotating 3x3 blocks", { 4, 4, 3, FALSE } }, + { "5x5, rotating 3x3 blocks", { 5, 5, 3, FALSE } }, + { "6x6, rotating 4x4 blocks", { 6, 6, 4, FALSE } }, + }; + + if (i < 0 || i >= lenof(presets)) + return FALSE; + + *name = dupstr(presets[i].title); + *params = dup_params(&presets[i].params); + + return TRUE; +} + +static void decode_params(game_params *ret, char const *string) +{ + ret->w = ret->h = atoi(string); + ret->n = 2; + ret->rowsonly = ret->orientable = FALSE; + ret->movetarget = 0; + while (*string && isdigit((unsigned char)*string)) string++; + if (*string == 'x') { + string++; + ret->h = atoi(string); + while (*string && isdigit((unsigned char)*string)) string++; + } + if (*string == 'n') { + string++; + ret->n = atoi(string); + while (*string && isdigit((unsigned char)*string)) string++; + } + while (*string) { + if (*string == 'r') { + ret->rowsonly = TRUE; + } else if (*string == 'o') { + ret->orientable = TRUE; + } else if (*string == 'm') { + string++; + ret->movetarget = atoi(string); + while (string[1] && isdigit((unsigned char)string[1])) string++; + } + string++; + } +} + +static char *encode_params(const game_params *params, int full) +{ + char buf[256]; + sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n, + params->rowsonly ? "r" : "", + params->orientable ? "o" : ""); + /* Shuffle limit is part of the limited parameters, because we have to + * supply the target move count. */ + if (params->movetarget) + sprintf(buf + strlen(buf), "m%d", params->movetarget); + return dupstr(buf); +} + +static config_item *game_configure(const game_params *params) +{ + config_item *ret; + char buf[80]; + + ret = snewn(7, config_item); + + ret[0].name = "Width"; + ret[0].type = C_STRING; + sprintf(buf, "%d", params->w); + ret[0].sval = dupstr(buf); + ret[0].ival = 0; + + ret[1].name = "Height"; + ret[1].type = C_STRING; + sprintf(buf, "%d", params->h); + ret[1].sval = dupstr(buf); + ret[1].ival = 0; + + ret[2].name = "Rotating block size"; + ret[2].type = C_STRING; + sprintf(buf, "%d", params->n); + ret[2].sval = dupstr(buf); + ret[2].ival = 0; + + ret[3].name = "One number per row"; + ret[3].type = C_BOOLEAN; + ret[3].sval = NULL; + ret[3].ival = params->rowsonly; + + ret[4].name = "Orientation matters"; + ret[4].type = C_BOOLEAN; + ret[4].sval = NULL; + ret[4].ival = params->orientable; + + ret[5].name = "Number of shuffling moves"; + ret[5].type = C_STRING; + sprintf(buf, "%d", params->movetarget); + ret[5].sval = dupstr(buf); + ret[5].ival = 0; + + ret[6].name = NULL; + ret[6].type = C_END; + ret[6].sval = NULL; + ret[6].ival = 0; + + return ret; +} + +static game_params *custom_params(const config_item *cfg) +{ + game_params *ret = snew(game_params); + + ret->w = atoi(cfg[0].sval); + ret->h = atoi(cfg[1].sval); + ret->n = atoi(cfg[2].sval); + ret->rowsonly = cfg[3].ival; + ret->orientable = cfg[4].ival; + ret->movetarget = atoi(cfg[5].sval); + + return ret; +} + +static char *validate_params(const game_params *params, int full) +{ + if (params->n < 2) + return "Rotating block size must be at least two"; + if (params->w < params->n) + return "Width must be at least the rotating block size"; + if (params->h < params->n) + return "Height must be at least the rotating block size"; + return NULL; +} + +/* + * This function actually performs a rotation on a grid. The `x' + * and `y' coordinates passed in are the coordinates of the _top + * left corner_ of the rotated region. (Using the centre would have + * involved half-integers and been annoyingly fiddly. Clicking in + * the centre is good for a user interface, but too inconvenient to + * use internally.) + */ +static void do_rotate(int *grid, int w, int h, int n, int orientable, + int x, int y, int dir) +{ + int i, j; + + assert(x >= 0 && x+n <= w); + assert(y >= 0 && y+n <= h); + dir &= 3; + if (dir == 0) + return; /* nothing to do */ + + grid += y*w+x; /* translate region to top corner */ + + /* + * If we were leaving the result of the rotation in a separate + * grid, the simple thing to do would be to loop over each + * square within the rotated region and assign it from its + * source square. However, to do it in place without taking + * O(n^2) memory, we need to be marginally more clever. What + * I'm going to do is loop over about one _quarter_ of the + * rotated region and permute each element within that quarter + * with its rotational coset. + * + * The size of the region I need to loop over is (n+1)/2 by + * n/2, which is an obvious exact quarter for even n and is a + * rectangle for odd n. (For odd n, this technique leaves out + * one element of the square, which is of course the central + * one that never moves anyway.) + */ + for (i = 0; i < (n+1)/2; i++) { + for (j = 0; j < n/2; j++) { + int k; + int g[4]; + int p[4]; + + p[0] = j*w+i; + p[1] = i*w+(n-j-1); + p[2] = (n-j-1)*w+(n-i-1); + p[3] = (n-i-1)*w+j; + + for (k = 0; k < 4; k++) + g[k] = grid[p[k]]; + + for (k = 0; k < 4; k++) { + int v = g[(k+dir) & 3]; + if (orientable) + v ^= ((v+dir) ^ v) & 3; /* alter orientation */ + grid[p[k]] = v; + } + } + } + + /* + * Don't forget the orientation on the centre square, if n is + * odd. + */ + if (orientable && (n & 1)) { + int v = grid[n/2*(w+1)]; + v ^= ((v+dir) ^ v) & 3; /* alter orientation */ + grid[n/2*(w+1)] = v; + } +} + +static int grid_complete(int *grid, int wh, int orientable) +{ + int ok = TRUE; + int i; + for (i = 1; i < wh; i++) + if (grid[i] < grid[i-1]) + ok = FALSE; + if (orientable) { + for (i = 0; i < wh; i++) + if (grid[i] & 3) + ok = FALSE; + } + return ok; +} + +static char *new_game_desc(const game_params *params, random_state *rs, + char **aux, int interactive) +{ + int *grid; + int w = params->w, h = params->h, n = params->n, wh = w*h; + int i; + char *ret; + int retlen; + int total_moves; + + /* + * Set up a solved grid. + */ + grid = snewn(wh, int); + for (i = 0; i < wh; i++) + grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4; + + /* + * Shuffle it. This game is complex enough that I don't feel up + * to analysing its full symmetry properties (particularly at + * n=4 and above!), so I'm going to do it the pedestrian way + * and simply shuffle the grid by making a long sequence of + * randomly chosen moves. + */ + total_moves = params->movetarget; + if (!total_moves) + /* Add a random move to avoid parity issues. */ + total_moves = w*h*n*n*2 + random_upto(rs, 2); + + do { + int *prevmoves; + int rw, rh; /* w/h of rotation centre space */ + + rw = w - n + 1; + rh = h - n + 1; + prevmoves = snewn(rw * rh, int); + for (i = 0; i < rw * rh; i++) + prevmoves[i] = 0; + + for (i = 0; i < total_moves; i++) { + int x, y, r, oldtotal, newtotal, dx, dy; + + do { + x = random_upto(rs, w - n + 1); + y = random_upto(rs, h - n + 1); + r = 2 * random_upto(rs, 2) - 1; + + /* + * See if any previous rotations has happened at + * this point which nothing has overlapped since. + * If so, ensure we haven't either undone a + * previous move or repeated one so many times that + * it turns into fewer moves in the inverse + * direction (i.e. three identical rotations). + */ + oldtotal = prevmoves[y*rw+x]; + newtotal = oldtotal + r; + + /* + * Special case here for w==h==n, in which case + * there is actually no way to _avoid_ all moves + * repeating or undoing previous ones. + */ + } while ((w != n || h != n) && + (abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2)); + + do_rotate(grid, w, h, n, params->orientable, x, y, r); + + /* + * Log the rotation we've just performed at this point, + * for inversion detection in the next move. + * + * Also zero a section of the prevmoves array, because + * any rotation area which _overlaps_ this one is now + * entirely safe to perform further moves in. + * + * Two rotation areas overlap if their top left + * coordinates differ by strictly less than n in both + * directions + */ + prevmoves[y*rw+x] += r; + for (dy = -n+1; dy <= n-1; dy++) { + if (y + dy < 0 || y + dy >= rh) + continue; + for (dx = -n+1; dx <= n-1; dx++) { + if (x + dx < 0 || x + dx >= rw) + continue; + if (dx == 0 && dy == 0) + continue; + prevmoves[(y+dy)*rw+(x+dx)] = 0; + } + } + } + + sfree(prevmoves); + + } while (grid_complete(grid, wh, params->orientable)); + + /* + * Now construct the game description, by describing the grid + * as a simple sequence of integers. They're comma-separated, + * unless the puzzle is orientable in which case they're + * separated by orientation letters `u', `d', `l' and `r'. + */ + ret = NULL; + retlen = 0; + for (i = 0; i < wh; i++) { + char buf[80]; + int k; + + k = sprintf(buf, "%d%c", grid[i] / 4, + (char)(params->orientable ? "uldr"[grid[i] & 3] : ',')); + + ret = sresize(ret, retlen + k + 1, char); + strcpy(ret + retlen, buf); + retlen += k; + } + if (!params->orientable) + ret[retlen-1] = '\0'; /* delete last comma */ + + sfree(grid); + return ret; +} + +static char *validate_desc(const game_params *params, const char *desc) +{ + const char *p; + int w = params->w, h = params->h, wh = w*h; + int i; + + p = desc; + + for (i = 0; i < wh; i++) { + if (*p < '0' || *p > '9') + return "Not enough numbers in string"; + while (*p >= '0' && *p <= '9') + p++; + if (!params->orientable && i < wh-1) { + if (*p != ',') + return "Expected comma after number"; + } else if (params->orientable && i < wh) { + if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd') + return "Expected orientation letter after number"; + } else if (i == wh-1 && *p) { + return "Excess junk at end of string"; + } + + if (*p) p++; /* eat comma */ + } + + return NULL; +} + +static game_state *new_game(midend *me, const game_params *params, + const char *desc) +{ + game_state *state = snew(game_state); + int w = params->w, h = params->h, n = params->n, wh = w*h; + int i; + const char *p; + + state->w = w; + state->h = h; + state->n = n; + state->orientable = params->orientable; + state->completed = 0; + state->used_solve = FALSE; + state->movecount = 0; + state->movetarget = params->movetarget; + state->lastx = state->lasty = state->lastr = -1; + + state->grid = snewn(wh, int); + + p = desc; + + for (i = 0; i < wh; i++) { + state->grid[i] = 4 * atoi(p); + while (*p >= '0' && *p <= '9') + p++; + if (*p) { + if (params->orientable) { + switch (*p) { + case 'l': state->grid[i] |= 1; break; + case 'd': state->grid[i] |= 2; break; + case 'r': state->grid[i] |= 3; break; + } + } + p++; + } + } + + return state; +} + +static game_state *dup_game(const game_state *state) +{ + game_state *ret = snew(game_state); + + ret->w = state->w; + ret->h = state->h; + ret->n = state->n; + ret->orientable = state->orientable; + ret->completed = state->completed; + ret->movecount = state->movecount; + ret->movetarget = state->movetarget; + ret->lastx = state->lastx; + ret->lasty = state->lasty; + ret->lastr = state->lastr; + ret->used_solve = state->used_solve; + + ret->grid = snewn(ret->w * ret->h, int); + memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int)); + + return ret; +} + +static void free_game(game_state *state) +{ + sfree(state->grid); + sfree(state); +} + +static int compare_int(const void *av, const void *bv) +{ + const int *a = (const int *)av; + const int *b = (const int *)bv; + if (*a < *b) + return -1; + else if (*a > *b) + return +1; + else + return 0; +} + +static char *solve_game(const game_state *state, const game_state *currstate, + const char *aux, char **error) +{ + return dupstr("S"); +} + +static int game_can_format_as_text_now(const game_params *params) +{ + return TRUE; +} + +static char *game_text_format(const game_state *state) +{ + char *ret, *p, buf[80]; + int i, x, y, col, o, maxlen; + + /* + * First work out how many characters we need to display each + * number. We're pretty flexible on grid contents here, so we + * have to scan the entire grid. + */ + col = 0; + for (i = 0; i < state->w * state->h; i++) { + x = sprintf(buf, "%d", state->grid[i] / 4); + if (col < x) col = x; + } + o = (state->orientable ? 1 : 0); + + /* + * Now we know the exact total size of the grid we're going to + * produce: it's got h rows, each containing w lots of col+o, + * w-1 spaces and a trailing newline. + */ + maxlen = state->h * state->w * (col+o+1); + + ret = snewn(maxlen+1, char); + p = ret; + + for (y = 0; y < state->h; y++) { + for (x = 0; x < state->w; x++) { + int v = state->grid[state->w*y+x]; + sprintf(buf, "%*d", col, v/4); + memcpy(p, buf, col); + p += col; + if (o) + *p++ = "^"[v & 3]; + if (x+1 == state->w) + *p++ = '\n'; + else + *p++ = ' '; + } + } + + assert(p - ret == maxlen); + *p = '\0'; + return ret; +} + +struct game_ui { + int cur_x, cur_y; + int cur_visible; +}; + +static game_ui *new_ui(const game_state *state) +{ + game_ui *ui = snew(game_ui); + + ui->cur_x = 0; + ui->cur_y = 0; + ui->cur_visible = FALSE; + + return ui; +} + +static void free_ui(game_ui *ui) +{ + sfree(ui); +} + +static char *encode_ui(const game_ui *ui) +{ + return NULL; +} + +static void decode_ui(game_ui *ui, const char *encoding) +{ +} + +static void game_changed_state(game_ui *ui, const game_state *oldstate, + const game_state *newstate) +{ +} + +struct game_drawstate { + int started; + int w, h, bgcolour; + int *grid; + int tilesize; + int cur_x, cur_y; +}; + +static char *interpret_move(const game_state *state, game_ui *ui, + const game_drawstate *ds, + int x, int y, int button) +{ + int w = state->w, h = state->h, n = state->n /* , wh = w*h */; + char buf[80]; + int dir; + + button = button & (~MOD_MASK | MOD_NUM_KEYPAD); + + if (IS_CURSOR_MOVE(button)) { + if (button == CURSOR_LEFT && ui->cur_x > 0) + ui->cur_x--; + if (button == CURSOR_RIGHT && (ui->cur_x+n) < (w)) + ui->cur_x++; + if (button == CURSOR_UP && ui->cur_y > 0) + ui->cur_y--; + if (button == CURSOR_DOWN && (ui->cur_y+n) < (h)) + ui->cur_y++; + ui->cur_visible = 1; + return ""; + } + + if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { + /* + * Determine the coordinates of the click. We offset by n-1 + * half-blocks so that the user must click at the centre of + * a rotation region rather than at the corner. + */ + x -= (n-1) * TILE_SIZE / 2; + y -= (n-1) * TILE_SIZE / 2; + x = FROMCOORD(x); + y = FROMCOORD(y); + dir = (button == LEFT_BUTTON ? 1 : -1); + if (x < 0 || x > w-n || y < 0 || y > h-n) + return NULL; + ui->cur_visible = 0; + } else if (IS_CURSOR_SELECT(button)) { + if (ui->cur_visible) { + x = ui->cur_x; + y = ui->cur_y; + dir = (button == CURSOR_SELECT2) ? -1 : +1; + } else { + ui->cur_visible = 1; + return ""; + } + } else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') { + x = y = 0; + dir = (button == 'A' ? -1 : +1); + } else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') { + x = w-n; + y = 0; + dir = (button == 'B' ? -1 : +1); + } else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') { + x = 0; + y = h-n; + dir = (button == 'C' ? -1 : +1); + } else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') { + x = w-n; + y = h-n; + dir = (button == 'D' ? -1 : +1); + } else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) { + x = (w-n) / 2; + y = 0; + dir = +1; + } else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) { + x = (w-n) / 2; + y = h-n; + dir = +1; + } else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) { + x = 0; + y = (h-n) / 2; + dir = +1; + } else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) { + x = w-n; + y = (h-n) / 2; + dir = +1; + } else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){ + x = (w-n) / 2; + y = (h-n) / 2; + dir = +1; + } else { + return NULL; /* no move to be made */ + } + + /* + * If we reach here, we have a valid move. + */ + sprintf(buf, "M%d,%d,%d", x, y, dir); + return dupstr(buf); +} + +static game_state *execute_move(const game_state *from, const char *move) +{ + game_state *ret; + int w = from->w, h = from->h, n = from->n, wh = w*h; + int x, y, dir; + + if (!strcmp(move, "S")) { + int i; + ret = dup_game(from); + + /* + * Simply replace the grid with a solved one. For this game, + * this isn't a useful operation for actually telling the user + * what they should have done, but it is useful for + * conveniently being able to get hold of a clean state from + * which to practise manoeuvres. + */ + qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int); + for (i = 0; i < ret->w*ret->h; i++) + ret->grid[i] &= ~3; + ret->used_solve = TRUE; + ret->completed = ret->movecount = 1; + + return ret; + } + + if (move[0] != 'M' || + sscanf(move+1, "%d,%d,%d", &x, &y, &dir) != 3 || + x < 0 || y < 0 || x > from->w - n || y > from->h - n) + return NULL; /* can't parse this move string */ + + ret = dup_game(from); + ret->movecount++; + do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir); + ret->lastx = x; + ret->lasty = y; + ret->lastr = dir; + + /* + * See if the game has been completed. To do this we simply + * test that the grid contents are in increasing order. + */ + if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable)) + ret->completed = ret->movecount; + return ret; +} + +/* ---------------------------------------------------------------------- + * Drawing routines. + */ + +static void game_compute_size(const game_params *params, int tilesize, + int *x, int *y) +{ + /* Ick: fake up `ds->tilesize' for macro expansion purposes */ + struct { int tilesize; } ads, *ds = &ads; + ads.tilesize = tilesize; + + *x = TILE_SIZE * params->w + 2 * BORDER; + *y = TILE_SIZE * params->h + 2 * BORDER; +} + +static void game_set_size(drawing *dr, game_drawstate *ds, + const game_params *params, int tilesize) +{ + ds->tilesize = tilesize; +} + +static float *game_colours(frontend *fe, int *ncolours) +{ + float *ret = snewn(3 * NCOLOURS, float); + int i; + + game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT); + + /* cursor is light-background with a red tinge. */ + ret[COL_HIGHCURSOR * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 1.0F; + ret[COL_HIGHCURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.5F; + ret[COL_HIGHCURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.5F; + + for (i = 0; i < 3; i++) { + ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F; + ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F; + ret[COL_TEXT * 3 + i] = 0.0; + ret[COL_LOWCURSOR * 3 + i] = ret[COL_HIGHCURSOR * 3 + i] * 0.6F; + } + + *ncolours = NCOLOURS; + return ret; +} + +static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) +{ + struct game_drawstate *ds = snew(struct game_drawstate); + int i; + + ds->started = FALSE; + ds->w = state->w; + ds->h = state->h; + ds->bgcolour = COL_BACKGROUND; + ds->grid = snewn(ds->w*ds->h, int); + ds->tilesize = 0; /* haven't decided yet */ + for (i = 0; i < ds->w*ds->h; i++) + ds->grid[i] = -1; + ds->cur_x = ds->cur_y = -state->n; + + return ds; +} + +static void game_free_drawstate(drawing *dr, game_drawstate *ds) +{ + sfree(ds->grid); + sfree(ds); +} + +struct rotation { + int cx, cy, cw, ch; /* clip region */ + int ox, oy; /* rotation origin */ + float c, s; /* cos and sin of rotation angle */ + int lc, rc, tc, bc; /* colours of tile edges */ +}; + +static void rotate(int *xy, struct rotation *rot) +{ + if (rot) { + float xf = (float)xy[0] - rot->ox, yf = (float)xy[1] - rot->oy; + float xf2, yf2; + + xf2 = rot->c * xf + rot->s * yf; + yf2 = - rot->s * xf + rot->c * yf; + + xy[0] = (int)(xf2 + rot->ox + 0.5); /* round to nearest */ + xy[1] = (int)(yf2 + rot->oy + 0.5); /* round to nearest */ + } +} + +#define CUR_TOP 1 +#define CUR_RIGHT 2 +#define CUR_BOTTOM 4 +#define CUR_LEFT 8 + +static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state, + int x, int y, int tile, int flash_colour, + struct rotation *rot, unsigned cedges) +{ + int coords[8]; + char str[40]; + + /* + * If we've been passed a rotation region but we're drawing a + * tile which is outside it, we must draw it normally. This can + * occur if we're cleaning up after a completion flash while a + * new move is also being made. + */ + if (rot && (x < rot->cx || y < rot->cy || + x >= rot->cx+rot->cw || y >= rot->cy+rot->ch)) + rot = NULL; + + if (rot) + clip(dr, rot->cx, rot->cy, rot->cw, rot->ch); + + /* + * We must draw each side of the tile's highlight separately, + * because in some cases (during rotation) they will all need + * to be different colours. + */ + + /* The centre point is common to all sides. */ + coords[4] = x + TILE_SIZE / 2; + coords[5] = y + TILE_SIZE / 2; + rotate(coords+4, rot); + + /* Right side. */ + coords[0] = x + TILE_SIZE - 1; + coords[1] = y + TILE_SIZE - 1; + rotate(coords+0, rot); + coords[2] = x + TILE_SIZE - 1; + coords[3] = y; + rotate(coords+2, rot); + draw_polygon(dr, coords, 3, rot ? rot->rc : COL_LOWLIGHT, + rot ? rot->rc : (cedges & CUR_RIGHT) ? COL_LOWCURSOR : COL_LOWLIGHT); + + /* Bottom side. */ + coords[2] = x; + coords[3] = y + TILE_SIZE - 1; + rotate(coords+2, rot); + draw_polygon(dr, coords, 3, rot ? rot->bc : COL_LOWLIGHT, + rot ? rot->bc : (cedges & CUR_BOTTOM) ? COL_LOWCURSOR : COL_LOWLIGHT); + + /* Left side. */ + coords[0] = x; + coords[1] = y; + rotate(coords+0, rot); + draw_polygon(dr, coords, 3, rot ? rot->lc : COL_HIGHLIGHT, + rot ? rot->lc : (cedges & CUR_LEFT) ? COL_HIGHCURSOR : COL_HIGHLIGHT); + + /* Top side. */ + coords[2] = x + TILE_SIZE - 1; + coords[3] = y; + rotate(coords+2, rot); + draw_polygon(dr, coords, 3, rot ? rot->tc : COL_HIGHLIGHT, + rot ? rot->tc : (cedges & CUR_TOP) ? COL_HIGHCURSOR : COL_HIGHLIGHT); + + /* + * Now the main blank area in the centre of the tile. + */ + if (rot) { + coords[0] = x + HIGHLIGHT_WIDTH; + coords[1] = y + HIGHLIGHT_WIDTH; + rotate(coords+0, rot); + coords[2] = x + HIGHLIGHT_WIDTH; + coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH; + rotate(coords+2, rot); + coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH; + coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH; + rotate(coords+4, rot); + coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH; + coords[7] = y + HIGHLIGHT_WIDTH; + rotate(coords+6, rot); + draw_polygon(dr, coords, 4, flash_colour, flash_colour); + } else { + draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH, + TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, + flash_colour); + } + + /* + * Next, the triangles for orientation. + */ + if (state->orientable) { + int xdx, xdy, ydx, ydy; + int cx, cy, displ, displ2; + switch (tile & 3) { + case 0: + xdx = 1, xdy = 0; + ydx = 0, ydy = 1; + break; + case 1: + xdx = 0, xdy = -1; + ydx = 1, ydy = 0; + break; + case 2: + xdx = -1, xdy = 0; + ydx = 0, ydy = -1; + break; + default /* case 3 */: + xdx = 0, xdy = 1; + ydx = -1, ydy = 0; + break; + } + + cx = x + TILE_SIZE / 2; + cy = y + TILE_SIZE / 2; + displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2; + displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH; + + coords[0] = cx - displ * xdx + displ2 * ydx; + coords[1] = cy - displ * xdy + displ2 * ydy; + rotate(coords+0, rot); + coords[2] = cx + displ * xdx + displ2 * ydx; + coords[3] = cy + displ * xdy + displ2 * ydy; + rotate(coords+2, rot); + coords[4] = cx - displ * ydx; + coords[5] = cy - displ * ydy; + rotate(coords+4, rot); + draw_polygon(dr, coords, 3, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE); + } + + coords[0] = x + TILE_SIZE/2; + coords[1] = y + TILE_SIZE/2; + rotate(coords+0, rot); + sprintf(str, "%d", tile / 4); + draw_text(dr, coords[0], coords[1], + FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE, + COL_TEXT, str); + + if (rot) + unclip(dr); + + draw_update(dr, x, y, TILE_SIZE, TILE_SIZE); +} + +static int highlight_colour(float angle) +{ + int colours[32] = { + COL_LOWLIGHT, + COL_LOWLIGHT_GENTLE, + COL_LOWLIGHT_GENTLE, + COL_LOWLIGHT_GENTLE, + COL_HIGHLIGHT_GENTLE, + COL_HIGHLIGHT_GENTLE, + COL_HIGHLIGHT_GENTLE, + COL_HIGHLIGHT, + COL_HIGHLIGHT, + COL_HIGHLIGHT, + COL_HIGHLIGHT, + COL_HIGHLIGHT, + COL_HIGHLIGHT, + COL_HIGHLIGHT, + COL_HIGHLIGHT, + COL_HIGHLIGHT, + COL_HIGHLIGHT, + COL_HIGHLIGHT_GENTLE, + COL_HIGHLIGHT_GENTLE, + COL_HIGHLIGHT_GENTLE, + COL_LOWLIGHT_GENTLE, + COL_LOWLIGHT_GENTLE, + COL_LOWLIGHT_GENTLE, + COL_LOWLIGHT, + COL_LOWLIGHT, + COL_LOWLIGHT, + COL_LOWLIGHT, + COL_LOWLIGHT, + COL_LOWLIGHT, + COL_LOWLIGHT, + COL_LOWLIGHT, + COL_LOWLIGHT, + }; + + return colours[(int)((angle + 2*PI) / (PI/16)) & 31]; +} + +static float game_anim_length_real(const game_state *oldstate, + const game_state *newstate, int dir, + const game_ui *ui) +{ + /* + * Our game_anim_length doesn't need to modify its game_ui, so + * this is the real function which declares ui as const. We must + * wrap this for the backend structure with a version that has ui + * non-const, but we still need this version to call from within + * game_redraw which only has a const ui available. + */ + return (float)(ANIM_PER_BLKSIZE_UNIT * sqrt(newstate->n-1)); +} + +static float game_anim_length(const game_state *oldstate, + const game_state *newstate, int dir, game_ui *ui) +{ + return game_anim_length_real(oldstate, newstate, dir, ui); + +} + +static float game_flash_length(const game_state *oldstate, + const game_state *newstate, int dir, game_ui *ui) +{ + if (!oldstate->completed && newstate->completed && + !oldstate->used_solve && !newstate->used_solve) + return 2 * FLASH_FRAME; + else + return 0.0F; +} + +static int game_status(const game_state *state) +{ + return state->completed ? +1 : 0; +} + +static void game_redraw(drawing *dr, game_drawstate *ds, + const game_state *oldstate, const game_state *state, + int dir, const game_ui *ui, + float animtime, float flashtime) +{ + int i, bgcolour; + struct rotation srot, *rot; + int lastx = -1, lasty = -1, lastr = -1; + int cx, cy, cmoved = 0, n = state->n; + + cx = ui->cur_visible ? ui->cur_x : -state->n; + cy = ui->cur_visible ? ui->cur_y : -state->n; + if (cx != ds->cur_x || cy != ds->cur_y) + cmoved = 1; + + if (flashtime > 0) { + int frame = (int)(flashtime / FLASH_FRAME); + bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT); + } else + bgcolour = COL_BACKGROUND; + + if (!ds->started) { + int coords[10]; + + draw_rect(dr, 0, 0, + TILE_SIZE * state->w + 2 * BORDER, + TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND); + draw_update(dr, 0, 0, + TILE_SIZE * state->w + 2 * BORDER, + TILE_SIZE * state->h + 2 * BORDER); + + /* + * Recessed area containing the whole puzzle. + */ + coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; + coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; + coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; + coords[3] = COORD(0) - HIGHLIGHT_WIDTH; + coords[4] = coords[2] - TILE_SIZE; + coords[5] = coords[3] + TILE_SIZE; + coords[8] = COORD(0) - HIGHLIGHT_WIDTH; + coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; + coords[6] = coords[8] + TILE_SIZE; + coords[7] = coords[9] - TILE_SIZE; + draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT); + + coords[1] = COORD(0) - HIGHLIGHT_WIDTH; + coords[0] = COORD(0) - HIGHLIGHT_WIDTH; + draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT); + + ds->started = TRUE; + } + + /* + * If we're drawing any rotated tiles, sort out the rotation + * parameters, and also zap the rotation region to the + * background colour before doing anything else. + */ + if (oldstate) { + float angle; + float anim_max = game_anim_length_real(oldstate, state, dir, ui); + + if (dir > 0) { + lastx = state->lastx; + lasty = state->lasty; + lastr = state->lastr; + } else { + lastx = oldstate->lastx; + lasty = oldstate->lasty; + lastr = -oldstate->lastr; + } + + rot = &srot; + rot->cx = COORD(lastx); + rot->cy = COORD(lasty); + rot->cw = rot->ch = TILE_SIZE * state->n; + rot->ox = rot->cx + rot->cw/2; + rot->oy = rot->cy + rot->ch/2; + angle = (float)((-PI/2 * lastr) * (1.0 - animtime / anim_max)); + rot->c = (float)cos(angle); + rot->s = (float)sin(angle); + + /* + * Sort out the colours of the various sides of the tile. + */ + rot->lc = highlight_colour((float)PI + angle); + rot->rc = highlight_colour(angle); + rot->tc = highlight_colour((float)(PI/2.0) + angle); + rot->bc = highlight_colour((float)(-PI/2.0) + angle); + + draw_rect(dr, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour); + } else + rot = NULL; + + /* + * Now draw each tile. + */ + for (i = 0; i < state->w * state->h; i++) { + int t, cc = 0; + int tx = i % state->w, ty = i / state->w; + + /* + * Figure out what should be displayed at this location. + * Usually it will be state->grid[i], unless we're in the + * middle of animating an actual rotation and this cell is + * within the rotation region, in which case we set -1 + * (always display). + */ + if (oldstate && lastx >= 0 && lasty >= 0 && + tx >= lastx && tx < lastx + state->n && + ty >= lasty && ty < lasty + state->n) + t = -1; + else + t = state->grid[i]; + + if (cmoved) { + /* cursor has moved (or changed visibility)... */ + if (tx == cx || tx == cx+n-1 || ty == cy || ty == cy+n-1) + cc = 1; /* ...we're on new cursor, redraw */ + if (tx == ds->cur_x || tx == ds->cur_x+n-1 || + ty == ds->cur_y || ty == ds->cur_y+n-1) + cc = 1; /* ...we were on old cursor, redraw */ + } + + if (ds->bgcolour != bgcolour || /* always redraw when flashing */ + ds->grid[i] != t || ds->grid[i] == -1 || t == -1 || cc) { + int x = COORD(tx), y = COORD(ty); + unsigned cedges = 0; + + if (tx == cx && ty >= cy && ty <= cy+n-1) cedges |= CUR_LEFT; + if (ty == cy && tx >= cx && tx <= cx+n-1) cedges |= CUR_TOP; + if (tx == cx+n-1 && ty >= cy && ty <= cy+n-1) cedges |= CUR_RIGHT; + if (ty == cy+n-1 && tx >= cx && tx <= cx+n-1) cedges |= CUR_BOTTOM; + + draw_tile(dr, ds, state, x, y, state->grid[i], bgcolour, rot, cedges); + ds->grid[i] = t; + } + } + ds->bgcolour = bgcolour; + ds->cur_x = cx; ds->cur_y = cy; + + /* + * Update the status bar. + */ + { + char statusbuf[256]; + + /* + * Don't show the new status until we're also showing the + * new _state_ - after the game animation is complete. + */ + if (oldstate) + state = oldstate; + + if (state->used_solve) + sprintf(statusbuf, "Moves since auto-solve: %d", + state->movecount - state->completed); + else { + sprintf(statusbuf, "%sMoves: %d", + (state->completed ? "COMPLETED! " : ""), + (state->completed ? state->completed : state->movecount)); + if (state->movetarget) + sprintf(statusbuf+strlen(statusbuf), " (target %d)", + state->movetarget); + } + + status_bar(dr, statusbuf); + } +} + +static int game_timing_state(const game_state *state, game_ui *ui) +{ + return TRUE; +} + +static void game_print_size(const game_params *params, float *x, float *y) +{ +} + +static void game_print(drawing *dr, const game_state *state, int tilesize) +{ +} + +#ifdef COMBINED +#define thegame twiddle +#endif + +const struct game thegame = { + "Twiddle", "games.twiddle", "twiddle", + default_params, + game_fetch_preset, NULL, + decode_params, + encode_params, + free_params, + dup_params, + TRUE, game_configure, custom_params, + validate_params, + new_game_desc, + validate_desc, + new_game, + dup_game, + free_game, + TRUE, solve_game, + TRUE, game_can_format_as_text_now, game_text_format, + new_ui, + free_ui, + encode_ui, + decode_ui, + game_changed_state, + interpret_move, + execute_move, + PREFERRED_TILE_SIZE, game_compute_size, game_set_size, + game_colours, + game_new_drawstate, + game_free_drawstate, + game_redraw, + game_anim_length, + game_flash_length, + game_status, + FALSE, FALSE, game_print_size, game_print, + TRUE, /* wants_statusbar */ + FALSE, game_timing_state, + 0, /* flags */ +}; + +/* vim: set shiftwidth=4 tabstop=8: */ -- cgit v1.2.3