From 881746789a489fad85aae8317555f73dbe261556 Mon Sep 17 00:00:00 2001 From: Franklin Wei Date: Sat, 29 Apr 2017 18:21:56 -0400 Subject: puzzles: refactor and resync with upstream This brings puzzles up-to-date with upstream revision 2d333750272c3967cfd5cd3677572cddeaad5932, though certain changes made by me, including cursor-only Untangle and some compilation fixes remain. Upstream code has been moved to its separate subdirectory and future syncs can be done by simply copying over the new sources. Change-Id: Ia6506ca5f78c3627165ea6791d38db414ace0804 --- apps/plugins/puzzles/src/pattern.c | 2255 ++++++++++++++++++++++++++++++++++++ 1 file changed, 2255 insertions(+) create mode 100644 apps/plugins/puzzles/src/pattern.c (limited to 'apps/plugins/puzzles/src/pattern.c') diff --git a/apps/plugins/puzzles/src/pattern.c b/apps/plugins/puzzles/src/pattern.c new file mode 100644 index 0000000000..9a74e55318 --- /dev/null +++ b/apps/plugins/puzzles/src/pattern.c @@ -0,0 +1,2255 @@ +/* + * pattern.c: the pattern-reconstruction game known as `nonograms'. + */ + +#include +#include +#include +#include +#include +#include + +#include "puzzles.h" + +enum { + COL_BACKGROUND, + COL_EMPTY, + COL_FULL, + COL_TEXT, + COL_UNKNOWN, + COL_GRID, + COL_CURSOR, + COL_ERROR, + NCOLOURS +}; + +#define PREFERRED_TILE_SIZE 24 +#define TILE_SIZE (ds->tilesize) +#define BORDER (3 * TILE_SIZE / 4) +#define TLBORDER(d) ( (d) / 5 + 2 ) +#define GUTTER (TILE_SIZE / 2) + +#define FROMCOORD(d, x) \ + ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE ) + +#define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d))) +#define GETTILESIZE(d, w) ((double)w / (2.0 + (double)TLBORDER(d) + (double)(d))) + +#define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x))) + +struct game_params { + int w, h; +}; + +#define GRID_UNKNOWN 2 +#define GRID_FULL 1 +#define GRID_EMPTY 0 + +typedef struct game_state_common { + /* Parts of the game state that don't change during play. */ + int w, h; + int rowsize; + int *rowdata, *rowlen; + unsigned char *immutable; + int refcount; +} game_state_common; + +struct game_state { + game_state_common *common; + unsigned char *grid; + int completed, cheated; +}; + +#define FLASH_TIME 0.13F + +static game_params *default_params(void) +{ + game_params *ret = snew(game_params); + + ret->w = ret->h = 15; + + return ret; +} + +static const struct game_params pattern_presets[] = { + {10, 10}, + {15, 15}, + {20, 20}, +#ifndef SLOW_SYSTEM + {25, 25}, + {30, 30}, +#endif +}; + +static int game_fetch_preset(int i, char **name, game_params **params) +{ + game_params *ret; + char str[80]; + + if (i < 0 || i >= lenof(pattern_presets)) + return FALSE; + + ret = snew(game_params); + *ret = pattern_presets[i]; + + sprintf(str, "%dx%d", ret->w, ret->h); + + *name = dupstr(str); + *params = ret; + return TRUE; +} + +static void free_params(game_params *params) +{ + sfree(params); +} + +static game_params *dup_params(const game_params *params) +{ + game_params *ret = snew(game_params); + *ret = *params; /* structure copy */ + return ret; +} + +static void decode_params(game_params *ret, char const *string) +{ + char const *p = string; + + ret->w = atoi(p); + while (*p && isdigit((unsigned char)*p)) p++; + if (*p == 'x') { + p++; + ret->h = atoi(p); + while (*p && isdigit((unsigned char)*p)) p++; + } else { + ret->h = ret->w; + } +} + +static char *encode_params(const game_params *params, int full) +{ + char ret[400]; + int len; + + len = sprintf(ret, "%dx%d", params->w, params->h); + assert(len < lenof(ret)); + ret[len] = '\0'; + + return dupstr(ret); +} + +static config_item *game_configure(const game_params *params) +{ + config_item *ret; + char buf[80]; + + ret = snewn(3, config_item); + + ret[0].name = "Width"; + ret[0].type = C_STRING; + sprintf(buf, "%d", params->w); + ret[0].sval = dupstr(buf); + ret[0].ival = 0; + + ret[1].name = "Height"; + ret[1].type = C_STRING; + sprintf(buf, "%d", params->h); + ret[1].sval = dupstr(buf); + ret[1].ival = 0; + + ret[2].name = NULL; + ret[2].type = C_END; + ret[2].sval = NULL; + ret[2].ival = 0; + + return ret; +} + +static game_params *custom_params(const config_item *cfg) +{ + game_params *ret = snew(game_params); + + ret->w = atoi(cfg[0].sval); + ret->h = atoi(cfg[1].sval); + + return ret; +} + +static char *validate_params(const game_params *params, int full) +{ + if (params->w <= 0 || params->h <= 0) + return "Width and height must both be greater than zero"; + return NULL; +} + +/* ---------------------------------------------------------------------- + * Puzzle generation code. + * + * For this particular puzzle, it seemed important to me to ensure + * a unique solution. I do this the brute-force way, by having a + * solver algorithm alongside the generator, and repeatedly + * generating a random grid until I find one whose solution is + * unique. It turns out that this isn't too onerous on a modern PC + * provided you keep grid size below around 30. Any offers of + * better algorithms, however, will be very gratefully received. + * + * Another annoyance of this approach is that it limits the + * available puzzles to those solvable by the algorithm I've used. + * My algorithm only ever considers a single row or column at any + * one time, which means it's incapable of solving the following + * difficult example (found by Bella Image around 1995/6, when she + * and I were both doing maths degrees): + * + * 2 1 2 1 + * + * +--+--+--+--+ + * 1 1 | | | | | + * +--+--+--+--+ + * 2 | | | | | + * +--+--+--+--+ + * 1 | | | | | + * +--+--+--+--+ + * 1 | | | | | + * +--+--+--+--+ + * + * Obviously this cannot be solved by a one-row-or-column-at-a-time + * algorithm (it would require at least one row or column reading + * `2 1', `1 2', `3' or `4' to get started). However, it can be + * proved to have a unique solution: if the top left square were + * empty, then the only option for the top row would be to fill the + * two squares in the 1 columns, which would imply the squares + * below those were empty, leaving no place for the 2 in the second + * row. Contradiction. Hence the top left square is full, and the + * unique solution follows easily from that starting point. + * + * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case + * it's useful to anyone.) + */ + +#ifndef STANDALONE_PICTURE_GENERATOR +static int float_compare(const void *av, const void *bv) +{ + const float *a = (const float *)av; + const float *b = (const float *)bv; + if (*a < *b) + return -1; + else if (*a > *b) + return +1; + else + return 0; +} + +static void generate(random_state *rs, int w, int h, unsigned char *retgrid) +{ + float *fgrid; + float *fgrid2; + int step, i, j; + float threshold; + + fgrid = snewn(w*h, float); + + for (i = 0; i < h; i++) { + for (j = 0; j < w; j++) { + fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F; + } + } + + /* + * The above gives a completely random splattering of black and + * white cells. We want to gently bias this in favour of _some_ + * reasonably thick areas of white and black, while retaining + * some randomness and fine detail. + * + * So we evolve the starting grid using a cellular automaton. + * Currently, I'm doing something very simple indeed, which is + * to set each square to the average of the surrounding nine + * cells (or the average of fewer, if we're on a corner). + */ + for (step = 0; step < 1; step++) { + fgrid2 = snewn(w*h, float); + + for (i = 0; i < h; i++) { + for (j = 0; j < w; j++) { + float sx, xbar; + int n, p, q; + + /* + * Compute the average of the surrounding cells. + */ + n = 0; + sx = 0.F; + for (p = -1; p <= +1; p++) { + for (q = -1; q <= +1; q++) { + if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w) + continue; + /* + * An additional special case not mentioned + * above: if a grid dimension is 2xn then + * we do not average across that dimension + * at all. Otherwise a 2x2 grid would + * contain four identical squares. + */ + if ((h==2 && p!=0) || (w==2 && q!=0)) + continue; + n++; + sx += fgrid[(i+p)*w+(j+q)]; + } + } + xbar = sx / n; + + fgrid2[i*w+j] = xbar; + } + } + + sfree(fgrid); + fgrid = fgrid2; + } + + fgrid2 = snewn(w*h, float); + memcpy(fgrid2, fgrid, w*h*sizeof(float)); + qsort(fgrid2, w*h, sizeof(float), float_compare); + threshold = fgrid2[w*h/2]; + sfree(fgrid2); + + for (i = 0; i < h; i++) { + for (j = 0; j < w; j++) { + retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL : + GRID_EMPTY); + } + } + + sfree(fgrid); +} +#endif + +static int compute_rowdata(int *ret, unsigned char *start, int len, int step) +{ + int i, n; + + n = 0; + + for (i = 0; i < len; i++) { + if (start[i*step] == GRID_FULL) { + int runlen = 1; + while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL) + runlen++; + ret[n++] = runlen; + i += runlen; + } + + if (i < len && start[i*step] == GRID_UNKNOWN) + return -1; + } + + return n; +} + +#define UNKNOWN 0 +#define BLOCK 1 +#define DOT 2 +#define STILL_UNKNOWN 3 + +#ifdef STANDALONE_SOLVER +int verbose = FALSE; +#endif + +static int do_recurse(unsigned char *known, unsigned char *deduced, + unsigned char *row, + unsigned char *minpos_done, unsigned char *maxpos_done, + unsigned char *minpos_ok, unsigned char *maxpos_ok, + int *data, int len, + int freespace, int ndone, int lowest) +{ + int i, j, k; + + + /* This algorithm basically tries all possible ways the given rows of + * black blocks can be laid out in the row/column being examined. + * Special care is taken to avoid checking the tail of a row/column + * if the same conditions have already been checked during this recursion + * The algorithm also takes care to cut its losses as soon as an + * invalid (partial) solution is detected. + */ + if (data[ndone]) { + if (lowest >= minpos_done[ndone] && lowest <= maxpos_done[ndone]) { + if (lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone]) { + for (i=0; i= minpos_ok[ndone] && lowest <= maxpos_ok[ndone]; + } else { + if (lowest < minpos_done[ndone]) minpos_done[ndone] = lowest; + if (lowest > maxpos_done[ndone]) maxpos_done[ndone] = lowest; + } + for (i=0; i<=freespace; i++) { + j = lowest; + for (k=0; k maxpos_ok[ndone]) maxpos_ok[ndone] = lowest + i; + if (lowest + i > maxpos_done[ndone]) maxpos_done[ndone] = lowest + i; + } + next_iter: + j++; + } + return lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone]; + } else { + for (i=lowest; i= 0 && known[i] == DOT; i--) + freespace--; + + if (rowlen == 0) { + memset(deduced, DOT, len); + } else { + do_recurse(known, deduced, row, minpos_done, maxpos_done, minpos_ok, + maxpos_ok, data, len, freespace, 0, 0); + } + + done_any = FALSE; + for (i=0; i "); + for (i = 0; i < len; i++) + putchar(start[i*step] == BLOCK ? '#' : + start[i*step] == DOT ? '.' : '?'); + putchar('\n'); + } +#endif + return done_any; +} + +static int solve_puzzle(const game_state *state, unsigned char *grid, + int w, int h, + unsigned char *matrix, unsigned char *workspace, + unsigned int *changed_h, unsigned int *changed_w, + int *rowdata +#ifdef STANDALONE_SOLVER + , int cluewid +#else + , int dummy +#endif + ) +{ + int i, j, ok, max; + int max_h, max_w; + + assert((state!=NULL && state->common->rowdata!=NULL) ^ (grid!=NULL)); + + max = max(w, h); + + memset(matrix, 0, w*h); + if (state) { + for (i=0; icommon->immutable[i]) + matrix[i] = state->grid[i]; + } + } + + /* For each column, compute how many squares can be deduced + * from just the row-data and initial clues. + * Later, changed_* will hold how many squares were changed + * in every row/column in the previous iteration + * Changed_* is used to choose the next rows / cols to re-examine + */ + for (i=0; icommon->rowdata) { + memcpy(rowdata, state->common->rowdata + state->common->rowsize*(w+i), max*sizeof(int)); + rowlen = state->common->rowlen[w+i]; + } else { + rowlen = compute_rowdata(rowdata, grid+i*w, w, 1); + } + rowdata[rowlen] = 0; + if (rowlen == 0) { + changed_h[i] = w; + } else { + for (j=0, freespace=w+1; rowdata[j]; j++) + freespace -= rowdata[j] + 1; + for (j=0, changed_h[i]=0; rowdata[j]; j++) + if (rowdata[j] > freespace) + changed_h[i] += rowdata[j] - freespace; + } + for (j = 0; j < w; j++) + if (matrix[i*w+j]) + changed_h[i]++; + } + for (i=0,max_h=0; i max_h) + max_h = changed_h[i]; + for (i=0; icommon->rowdata) { + memcpy(rowdata, state->common->rowdata + state->common->rowsize*i, max*sizeof(int)); + rowlen = state->common->rowlen[i]; + } else { + rowlen = compute_rowdata(rowdata, grid+i, h, w); + } + rowdata[rowlen] = 0; + if (rowlen == 0) { + changed_w[i] = h; + } else { + for (j=0, freespace=h+1; rowdata[j]; j++) + freespace -= rowdata[j] + 1; + for (j=0, changed_w[i]=0; rowdata[j]; j++) + if (rowdata[j] > freespace) + changed_w[i] += rowdata[j] - freespace; + } + for (j = 0; j < h; j++) + if (matrix[j*w+i]) + changed_w[i]++; + } + for (i=0,max_w=0; i max_w) + max_w = changed_w[i]; + + /* Solve the puzzle. + * Process rows/columns individually. Deductions involving more than one + * row and/or column at a time are not supported. + * Take care to only process rows/columns which have been changed since they + * were previously processed. + * Also, prioritize rows/columns which have had the most changes since their + * previous processing, as they promise the greatest benefit. + * Extremely rectangular grids (e.g. 10x20, 15x40, etc.) are not treated specially. + */ + do { + for (; max_h && max_h >= max_w; max_h--) { + for (i=0; i= max_h) { + if (state && state->common->rowdata) { + memcpy(rowdata, state->common->rowdata + state->common->rowsize*(w+i), max*sizeof(int)); + rowdata[state->common->rowlen[w+i]] = 0; + } else { + rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0; + } + do_row(workspace, workspace+max, workspace+2*max, + workspace+3*max, workspace+4*max, + workspace+5*max, workspace+6*max, + matrix+i*w, w, 1, rowdata, changed_w +#ifdef STANDALONE_SOLVER + , "row", i+1, cluewid +#endif + ); + changed_h[i] = 0; + } + } + for (i=0,max_w=0; i max_w) + max_w = changed_w[i]; + } + for (; max_w && max_w >= max_h; max_w--) { + for (i=0; i= max_w) { + if (state && state->common->rowdata) { + memcpy(rowdata, state->common->rowdata + state->common->rowsize*i, max*sizeof(int)); + rowdata[state->common->rowlen[i]] = 0; + } else { + rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0; + } + do_row(workspace, workspace+max, workspace+2*max, + workspace+3*max, workspace+4*max, + workspace+5*max, workspace+6*max, + matrix+i, h, w, rowdata, changed_h +#ifdef STANDALONE_SOLVER + , "col", i+1, cluewid +#endif + ); + changed_w[i] = 0; + } + } + for (i=0,max_h=0; i max_h) + max_h = changed_h[i]; + } + } while (max_h>0 || max_w>0); + + ok = TRUE; + for (i=0; i 2) { + for (i = 0; i < h; i++) { + int colours = 0; + for (j = 0; j < w; j++) + colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1); + if (colours != 3) + ok = FALSE; + } + } + if (h > 2) { + for (j = 0; j < w; j++) { + int colours = 0; + for (i = 0; i < h; i++) + colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1); + if (colours != 3) + ok = FALSE; + } + } + if (!ok) + continue; + + ok = solve_puzzle(NULL, grid, w, h, matrix, workspace, + changed_h, changed_w, rowdata, 0); + } while (!ok); + + sfree(matrix); + sfree(workspace); + sfree(changed_h); + sfree(changed_w); + sfree(rowdata); + return grid; +} +#endif + +#ifdef STANDALONE_PICTURE_GENERATOR +unsigned char *picture; +#endif + +static char *new_game_desc(const game_params *params, random_state *rs, + char **aux, int interactive) +{ + unsigned char *grid; + int i, j, max, rowlen, *rowdata; + char intbuf[80], *desc; + int desclen, descpos; +#ifdef STANDALONE_PICTURE_GENERATOR + game_state *state; + int *index; +#endif + + max = max(params->w, params->h); + +#ifdef STANDALONE_PICTURE_GENERATOR + /* + * Fixed input picture. + */ + grid = snewn(params->w * params->h, unsigned char); + memcpy(grid, picture, params->w * params->h); + + /* + * Now winnow the immutable square set as far as possible. + */ + state = snew(game_state); + state->grid = grid; + state->common = snew(game_state_common); + state->common->rowdata = NULL; + state->common->immutable = snewn(params->w * params->h, unsigned char); + memset(state->common->immutable, 1, params->w * params->h); + + index = snewn(params->w * params->h, int); + for (i = 0; i < params->w * params->h; i++) + index[i] = i; + shuffle(index, params->w * params->h, sizeof(*index), rs); + + { + unsigned char *matrix = snewn(params->w*params->h, unsigned char); + unsigned char *workspace = snewn(max*7, unsigned char); + unsigned int *changed_h = snewn(max+1, unsigned int); + unsigned int *changed_w = snewn(max+1, unsigned int); + int *rowdata = snewn(max+1, int); + for (i = 0; i < params->w * params->h; i++) { + state->common->immutable[index[i]] = 0; + if (!solve_puzzle(state, grid, params->w, params->h, + matrix, workspace, changed_h, changed_w, + rowdata, 0)) + state->common->immutable[index[i]] = 1; + } + sfree(workspace); + sfree(changed_h); + sfree(changed_w); + sfree(rowdata); + sfree(matrix); + } +#else + grid = generate_soluble(rs, params->w, params->h); +#endif + rowdata = snewn(max, int); + + /* + * Save the solved game in aux. + */ + if (aux) { + char *ai = snewn(params->w * params->h + 2, char); + + /* + * String format is exactly the same as a solve move, so we + * can just dupstr this in solve_game(). + */ + + ai[0] = 'S'; + + for (i = 0; i < params->w * params->h; i++) + ai[i+1] = grid[i] ? '1' : '0'; + + ai[params->w * params->h + 1] = '\0'; + + *aux = ai; + } + + /* + * Seed is a slash-separated list of row contents; each row + * contents section is a dot-separated list of integers. Row + * contents are listed in the order (columns left to right, + * then rows top to bottom). + * + * Simplest way to handle memory allocation is to make two + * passes, first computing the seed size and then writing it + * out. + */ + desclen = 0; + for (i = 0; i < params->w + params->h; i++) { + if (i < params->w) + rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w); + else + rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w, + params->w, 1); + if (rowlen > 0) { + for (j = 0; j < rowlen; j++) { + desclen += 1 + sprintf(intbuf, "%d", rowdata[j]); + } + } else { + desclen++; + } + } + desc = snewn(desclen, char); + descpos = 0; + for (i = 0; i < params->w + params->h; i++) { + if (i < params->w) + rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w); + else + rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w, + params->w, 1); + if (rowlen > 0) { + for (j = 0; j < rowlen; j++) { + int len = sprintf(desc+descpos, "%d", rowdata[j]); + if (j+1 < rowlen) + desc[descpos + len] = '.'; + else + desc[descpos + len] = '/'; + descpos += len+1; + } + } else { + desc[descpos++] = '/'; + } + } + assert(descpos == desclen); + assert(desc[desclen-1] == '/'); + desc[desclen-1] = '\0'; +#ifdef STANDALONE_PICTURE_GENERATOR + for (i = 0; i < params->w * params->h; i++) + if (state->common->immutable[i]) + break; + if (i < params->w * params->h) { + /* + * At least one immutable square, so we need a suffix. + */ + int run; + + desc = sresize(desc, desclen + params->w * params->h + 3, char); + desc[descpos-1] = ','; + + run = 0; + for (i = 0; i < params->w * params->h; i++) { + if (!state->common->immutable[i]) { + run++; + if (run == 25) { + desc[descpos++] = 'z'; + run = 0; + } + } else { + desc[descpos++] = run + (grid[i] == GRID_FULL ? 'A' : 'a'); + run = 0; + } + } + if (run > 0) + desc[descpos++] = run + 'a'; + desc[descpos] = '\0'; + } + sfree(state->common->immutable); + sfree(state->common); + sfree(state); +#endif + sfree(rowdata); + sfree(grid); + return desc; +} + +static char *validate_desc(const game_params *params, const char *desc) +{ + int i, n, rowspace; + const char *p; + + for (i = 0; i < params->w + params->h; i++) { + if (i < params->w) + rowspace = params->h + 1; + else + rowspace = params->w + 1; + + if (*desc && isdigit((unsigned char)*desc)) { + do { + p = desc; + while (*desc && isdigit((unsigned char)*desc)) desc++; + n = atoi(p); + rowspace -= n+1; + + if (rowspace < 0) { + if (i < params->w) + return "at least one column contains more numbers than will fit"; + else + return "at least one row contains more numbers than will fit"; + } + } while (*desc++ == '.'); + } else { + desc++; /* expect a slash immediately */ + } + + if (desc[-1] == '/') { + if (i+1 == params->w + params->h) + return "too many row/column specifications"; + } else if (desc[-1] == '\0' || desc[-1] == ',') { + if (i+1 < params->w + params->h) + return "too few row/column specifications"; + } else + return "unrecognised character in game specification"; + } + + if (desc[-1] == ',') { + /* + * Optional extra piece of game description which fills in + * some grid squares as extra clues. + */ + i = 0; + while (i < params->w * params->h) { + int c = (unsigned char)*desc++; + if ((c >= 'a' && c <= 'z') || + (c >= 'A' && c <= 'Z')) { + int len = tolower(c) - 'a'; + i += len; + if (len < 25 && i < params->w*params->h) + i++; + if (i > params->w * params->h) { + return "too much data in clue-squares section"; + } + } else if (!c) { + return "too little data in clue-squares section"; + } else { + return "unrecognised character in clue-squares section"; + } + } + if (*desc) { + return "too much data in clue-squares section"; + } + } + + return NULL; +} + +static game_state *new_game(midend *me, const game_params *params, + const char *desc) +{ + int i; + const char *p; + game_state *state = snew(game_state); + + state->common = snew(game_state_common); + state->common->refcount = 1; + + state->common->w = params->w; + state->common->h = params->h; + + state->grid = snewn(state->common->w * state->common->h, unsigned char); + memset(state->grid, GRID_UNKNOWN, state->common->w * state->common->h); + + state->common->immutable = snewn(state->common->w * state->common->h, + unsigned char); + memset(state->common->immutable, 0, state->common->w * state->common->h); + + state->common->rowsize = max(state->common->w, state->common->h); + state->common->rowdata = snewn(state->common->rowsize * (state->common->w + state->common->h), int); + state->common->rowlen = snewn(state->common->w + state->common->h, int); + + state->completed = state->cheated = FALSE; + + for (i = 0; i < params->w + params->h; i++) { + state->common->rowlen[i] = 0; + if (*desc && isdigit((unsigned char)*desc)) { + do { + p = desc; + while (*desc && isdigit((unsigned char)*desc)) desc++; + state->common->rowdata[state->common->rowsize * i + state->common->rowlen[i]++] = + atoi(p); + } while (*desc++ == '.'); + } else { + desc++; /* expect a slash immediately */ + } + } + + if (desc[-1] == ',') { + /* + * Optional extra piece of game description which fills in + * some grid squares as extra clues. + */ + i = 0; + while (i < params->w * params->h) { + int c = (unsigned char)*desc++; + int full = isupper(c), len = tolower(c) - 'a'; + i += len; + if (len < 25 && i < params->w*params->h) { + state->grid[i] = full ? GRID_FULL : GRID_EMPTY; + state->common->immutable[i] = TRUE; + i++; + } + } + } + + return state; +} + +static game_state *dup_game(const game_state *state) +{ + game_state *ret = snew(game_state); + + ret->common = state->common; + ret->common->refcount++; + + ret->grid = snewn(ret->common->w * ret->common->h, unsigned char); + memcpy(ret->grid, state->grid, ret->common->w * ret->common->h); + + ret->completed = state->completed; + ret->cheated = state->cheated; + + return ret; +} + +static void free_game(game_state *state) +{ + if (--state->common->refcount == 0) { + sfree(state->common->rowdata); + sfree(state->common->rowlen); + sfree(state->common->immutable); + sfree(state->common); + } + sfree(state->grid); + sfree(state); +} + +static char *solve_game(const game_state *state, const game_state *currstate, + const char *ai, char **error) +{ + unsigned char *matrix; + int w = state->common->w, h = state->common->h; + int i; + char *ret; + int max, ok; + unsigned char *workspace; + unsigned int *changed_h, *changed_w; + int *rowdata; + + /* + * If we already have the solved state in ai, copy it out. + */ + if (ai) + return dupstr(ai); + + max = max(w, h); + matrix = snewn(w*h, unsigned char); + workspace = snewn(max*7, unsigned char); + changed_h = snewn(max+1, unsigned int); + changed_w = snewn(max+1, unsigned int); + rowdata = snewn(max+1, int); + + ok = solve_puzzle(state, NULL, w, h, matrix, workspace, + changed_h, changed_w, rowdata, 0); + + sfree(workspace); + sfree(changed_h); + sfree(changed_w); + sfree(rowdata); + + if (!ok) { + sfree(matrix); + *error = "Solving algorithm cannot complete this puzzle"; + return NULL; + } + + ret = snewn(w*h+2, char); + ret[0] = 'S'; + for (i = 0; i < w*h; i++) { + assert(matrix[i] == BLOCK || matrix[i] == DOT); + ret[i+1] = (matrix[i] == BLOCK ? '1' : '0'); + } + ret[w*h+1] = '\0'; + + sfree(matrix); + + return ret; +} + +static int game_can_format_as_text_now(const game_params *params) +{ + return TRUE; +} + +static char *game_text_format(const game_state *state) +{ + int w = state->common->w, h = state->common->h, i, j; + int left_gap = 0, top_gap = 0, ch = 2, cw = 1, limit = 1; + + int len, topleft, lw, lh, gw, gh; /* {line,grid}_{width,height} */ + char *board, *buf; + + for (i = 0; i < w; ++i) { + top_gap = max(top_gap, state->common->rowlen[i]); + for (j = 0; j < state->common->rowlen[i]; ++j) + while (state->common->rowdata[i*state->common->rowsize + j] >= limit) { + ++cw; + limit *= 10; + } + } + for (i = 0; i < h; ++i) { + int rowlen = 0, predecessors = FALSE; + for (j = 0; j < state->common->rowlen[i+w]; ++j) { + int copy = state->common->rowdata[(i+w)*state->common->rowsize + j]; + rowlen += predecessors; + predecessors = TRUE; + do ++rowlen; while (copy /= 10); + } + left_gap = max(left_gap, rowlen); + } + + cw = max(cw, 3); + + gw = w*cw + 2; + gh = h*ch + 1; + lw = gw + left_gap; + lh = gh + top_gap; + len = lw * lh; + topleft = lw * top_gap + left_gap; + + board = snewn(len + 1, char); + sprintf(board, "%*s\n", len - 2, ""); + + for (i = 0; i < lh; ++i) { + board[lw - 1 + i*lw] = '\n'; + if (i < top_gap) continue; + board[lw - 2 + i*lw] = ((i - top_gap) % ch ? '|' : '+'); + } + + for (i = 0; i < w; ++i) { + for (j = 0; j < state->common->rowlen[i]; ++j) { + int cell = topleft + i*cw + 1 + lw*(j - state->common->rowlen[i]); + int nch = sprintf(board + cell, "%*d", cw - 1, + state->common->rowdata[i*state->common->rowsize + j]); + board[cell + nch] = ' '; /* de-NUL-ify */ + } + } + + buf = snewn(left_gap, char); + for (i = 0; i < h; ++i) { + char *p = buf, *start = board + top_gap*lw + left_gap + (i*ch+1)*lw; + for (j = 0; j < state->common->rowlen[i+w]; ++j) { + if (p > buf) *p++ = ' '; + p += sprintf(p, "%d", state->common->rowdata[(i+w)*state->common->rowsize + j]); + } + memcpy(start - (p - buf), buf, p - buf); + } + + for (i = 0; i < w; ++i) { + for (j = 0; j < h; ++j) { + int cell = topleft + i*cw + j*ch*lw; + int center = cell + cw/2 + (ch/2)*lw; + int dx, dy; + board[cell] = 0 ? center : '+'; + for (dx = 1; dx < cw; ++dx) board[cell + dx] = '-'; + for (dy = 1; dy < ch; ++dy) board[cell + dy*lw] = '|'; + if (state->grid[i*w+j] == GRID_UNKNOWN) continue; + for (dx = 1; dx < cw; ++dx) + for (dy = 1; dy < ch; ++dy) + board[cell + dx + dy*lw] = + state->grid[i*w+j] == GRID_FULL ? '#' : '.'; + } + } + + memcpy(board + topleft + h*ch*lw, board + topleft, gw - 1); + + sfree(buf); + + return board; +} + +struct game_ui { + int dragging; + int drag_start_x; + int drag_start_y; + int drag_end_x; + int drag_end_y; + int drag, release, state; + int cur_x, cur_y, cur_visible; +}; + +static game_ui *new_ui(const game_state *state) +{ + game_ui *ret; + + ret = snew(game_ui); + ret->dragging = FALSE; + ret->cur_x = ret->cur_y = ret->cur_visible = 0; + + return ret; +} + +static void free_ui(game_ui *ui) +{ + sfree(ui); +} + +static char *encode_ui(const game_ui *ui) +{ + return NULL; +} + +static void decode_ui(game_ui *ui, const char *encoding) +{ +} + +static void game_changed_state(game_ui *ui, const game_state *oldstate, + const game_state *newstate) +{ +} + +struct game_drawstate { + int started; + int w, h; + int tilesize; + unsigned char *visible, *numcolours; + int cur_x, cur_y; +}; + +static char *interpret_move(const game_state *state, game_ui *ui, + const game_drawstate *ds, + int x, int y, int button) +{ + int control = button & MOD_CTRL, shift = button & MOD_SHFT; + button &= ~MOD_MASK; + + x = FROMCOORD(state->common->w, x); + y = FROMCOORD(state->common->h, y); + + if (x >= 0 && x < state->common->w && y >= 0 && y < state->common->h && + (button == LEFT_BUTTON || button == RIGHT_BUTTON || + button == MIDDLE_BUTTON)) { +#ifdef STYLUS_BASED + int currstate = state->grid[y * state->common->w + x]; +#endif + + ui->dragging = TRUE; + + if (button == LEFT_BUTTON) { + ui->drag = LEFT_DRAG; + ui->release = LEFT_RELEASE; +#ifdef STYLUS_BASED + ui->state = (currstate + 2) % 3; /* FULL -> EMPTY -> UNKNOWN */ +#else + ui->state = GRID_FULL; +#endif + } else if (button == RIGHT_BUTTON) { + ui->drag = RIGHT_DRAG; + ui->release = RIGHT_RELEASE; +#ifdef STYLUS_BASED + ui->state = (currstate + 1) % 3; /* EMPTY -> FULL -> UNKNOWN */ +#else + ui->state = GRID_EMPTY; +#endif + } else /* if (button == MIDDLE_BUTTON) */ { + ui->drag = MIDDLE_DRAG; + ui->release = MIDDLE_RELEASE; + ui->state = GRID_UNKNOWN; + } + + ui->drag_start_x = ui->drag_end_x = x; + ui->drag_start_y = ui->drag_end_y = y; + ui->cur_visible = 0; + + return ""; /* UI activity occurred */ + } + + if (ui->dragging && button == ui->drag) { + /* + * There doesn't seem much point in allowing a rectangle + * drag; people will generally only want to drag a single + * horizontal or vertical line, so we make that easy by + * snapping to it. + * + * Exception: if we're _middle_-button dragging to tag + * things as UNKNOWN, we may well want to trash an entire + * area and start over! + */ + if (ui->state != GRID_UNKNOWN) { + if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y)) + y = ui->drag_start_y; + else + x = ui->drag_start_x; + } + + if (x < 0) x = 0; + if (y < 0) y = 0; + if (x >= state->common->w) x = state->common->w - 1; + if (y >= state->common->h) y = state->common->h - 1; + + ui->drag_end_x = x; + ui->drag_end_y = y; + + return ""; /* UI activity occurred */ + } + + if (ui->dragging && button == ui->release) { + int x1, x2, y1, y2, xx, yy; + int move_needed = FALSE; + + x1 = min(ui->drag_start_x, ui->drag_end_x); + x2 = max(ui->drag_start_x, ui->drag_end_x); + y1 = min(ui->drag_start_y, ui->drag_end_y); + y2 = max(ui->drag_start_y, ui->drag_end_y); + + for (yy = y1; yy <= y2; yy++) + for (xx = x1; xx <= x2; xx++) + if (!state->common->immutable[yy * state->common->w + xx] && + state->grid[yy * state->common->w + xx] != ui->state) + move_needed = TRUE; + + ui->dragging = FALSE; + + if (move_needed) { + char buf[80]; + sprintf(buf, "%c%d,%d,%d,%d", + (char)(ui->state == GRID_FULL ? 'F' : + ui->state == GRID_EMPTY ? 'E' : 'U'), + x1, y1, x2-x1+1, y2-y1+1); + return dupstr(buf); + } else + return ""; /* UI activity occurred */ + } + + if (IS_CURSOR_MOVE(button)) { + int x = ui->cur_x, y = ui->cur_y, newstate; + char buf[80]; + move_cursor(button, &ui->cur_x, &ui->cur_y, state->common->w, state->common->h, 0); + ui->cur_visible = 1; + if (!control && !shift) return ""; + + newstate = control ? shift ? GRID_UNKNOWN : GRID_FULL : GRID_EMPTY; + if (state->grid[y * state->common->w + x] == newstate && + state->grid[ui->cur_y * state->common->w + ui->cur_x] == newstate) + return ""; + + sprintf(buf, "%c%d,%d,%d,%d", control ? shift ? 'U' : 'F' : 'E', + min(x, ui->cur_x), min(y, ui->cur_y), + abs(x - ui->cur_x) + 1, abs(y - ui->cur_y) + 1); + return dupstr(buf); + } + + if (IS_CURSOR_SELECT(button)) { + int currstate = state->grid[ui->cur_y * state->common->w + ui->cur_x]; + int newstate; + char buf[80]; + + if (!ui->cur_visible) { + ui->cur_visible = 1; + return ""; + } + + if (button == CURSOR_SELECT2) + newstate = currstate == GRID_UNKNOWN ? GRID_EMPTY : + currstate == GRID_EMPTY ? GRID_FULL : GRID_UNKNOWN; + else + newstate = currstate == GRID_UNKNOWN ? GRID_FULL : + currstate == GRID_FULL ? GRID_EMPTY : GRID_UNKNOWN; + + sprintf(buf, "%c%d,%d,%d,%d", + (char)(newstate == GRID_FULL ? 'F' : + newstate == GRID_EMPTY ? 'E' : 'U'), + ui->cur_x, ui->cur_y, 1, 1); + return dupstr(buf); + } + + return NULL; +} + +static game_state *execute_move(const game_state *from, const char *move) +{ + game_state *ret; + int x1, x2, y1, y2, xx, yy; + int val; + + if (move[0] == 'S' && + strlen(move) == from->common->w * from->common->h + 1) { + int i; + + ret = dup_game(from); + + for (i = 0; i < ret->common->w * ret->common->h; i++) + ret->grid[i] = (move[i+1] == '1' ? GRID_FULL : GRID_EMPTY); + + ret->completed = ret->cheated = TRUE; + + return ret; + } else if ((move[0] == 'F' || move[0] == 'E' || move[0] == 'U') && + sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 && + x1 >= 0 && x2 >= 0 && x1+x2 <= from->common->w && + y1 >= 0 && y2 >= 0 && y1+y2 <= from->common->h) { + + x2 += x1; + y2 += y1; + val = (move[0] == 'F' ? GRID_FULL : + move[0] == 'E' ? GRID_EMPTY : GRID_UNKNOWN); + + ret = dup_game(from); + for (yy = y1; yy < y2; yy++) + for (xx = x1; xx < x2; xx++) + if (!ret->common->immutable[yy * ret->common->w + xx]) + ret->grid[yy * ret->common->w + xx] = val; + + /* + * An actual change, so check to see if we've completed the + * game. + */ + if (!ret->completed) { + int *rowdata = snewn(ret->common->rowsize, int); + int i, len; + + ret->completed = TRUE; + + for (i=0; icommon->w; i++) { + len = compute_rowdata(rowdata, ret->grid+i, + ret->common->h, ret->common->w); + if (len != ret->common->rowlen[i] || + memcmp(ret->common->rowdata+i*ret->common->rowsize, + rowdata, len * sizeof(int))) { + ret->completed = FALSE; + break; + } + } + for (i=0; icommon->h; i++) { + len = compute_rowdata(rowdata, ret->grid+i*ret->common->w, + ret->common->w, 1); + if (len != ret->common->rowlen[i+ret->common->w] || + memcmp(ret->common->rowdata + + (i+ret->common->w)*ret->common->rowsize, + rowdata, len * sizeof(int))) { + ret->completed = FALSE; + break; + } + } + + sfree(rowdata); + } + + return ret; + } else + return NULL; +} + +/* ---------------------------------------------------------------------- + * Error-checking during gameplay. + */ + +/* + * The difficulty in error-checking Pattern is to make the error check + * _weak_ enough. The most obvious way would be to check each row and + * column by calling (a modified form of) do_row() to recursively + * analyse the row contents against the clue set and see if the + * GRID_UNKNOWNs could be filled in in any way that would end up + * correct. However, this turns out to be such a strong error check as + * to constitute a spoiler in many situations: you make a typo while + * trying to fill in one row, and not only does the row light up to + * indicate an error, but several columns crossed by the move also + * light up and draw your attention to deductions you hadn't even + * noticed you could make. + * + * So instead I restrict error-checking to 'complete runs' within a + * row, by which I mean contiguous sequences of GRID_FULL bounded at + * both ends by either GRID_EMPTY or the ends of the row. We identify + * all the complete runs in a row, and verify that _those_ are + * consistent with the row's clue list. Sequences of complete runs + * separated by solid GRID_EMPTY are required to match contiguous + * sequences in the clue list, whereas if there's at least one + * GRID_UNKNOWN between any two complete runs then those two need not + * be contiguous in the clue list. + * + * To simplify the edge cases, I pretend that the clue list for the + * row is extended with a 0 at each end, and I also pretend that the + * grid data for the row is extended with a GRID_EMPTY and a + * zero-length run at each end. This permits the contiguity checker to + * handle the fiddly end effects (e.g. if the first contiguous + * sequence of complete runs in the grid matches _something_ in the + * clue list but not at the beginning, this is allowable iff there's a + * GRID_UNKNOWN before the first one) with minimal faff, since the end + * effects just drop out as special cases of the normal inter-run + * handling (in this code the above case is not 'at the end of the + * clue list' at all, but between the implicit initial zero run and + * the first nonzero one). + * + * We must also be a little careful about how we search for a + * contiguous sequence of runs. In the clue list (1 1 2 1 2 3), + * suppose we see a GRID_UNKNOWN and then a length-1 run. We search + * for 1 in the clue list and find it at the very beginning. But now + * suppose we find a length-2 run with no GRID_UNKNOWN before it. We + * can't naively look at the next clue from the 1 we found, because + * that'll be the second 1 and won't match. Instead, we must backtrack + * by observing that the 2 we've just found must be contiguous with + * the 1 we've already seen, so we search for the sequence (1 2) and + * find it starting at the second 1. Now if we see a 3, we must + * rethink again and search for (1 2 3). + */ + +struct errcheck_state { + /* + * rowdata and rowlen point at the clue data for this row in the + * game state. + */ + int *rowdata; + int rowlen; + /* + * rowpos indicates the lowest position where it would be valid to + * see our next run length. It might be equal to rowlen, + * indicating that the next run would have to be the terminating 0. + */ + int rowpos; + /* + * ncontig indicates how many runs we've seen in a contiguous + * block. This is taken into account when searching for the next + * run we find, unless ncontig is zeroed out first by encountering + * a GRID_UNKNOWN. + */ + int ncontig; +}; + +static int errcheck_found_run(struct errcheck_state *es, int r) +{ +/* Macro to handle the pretence that rowdata has a 0 at each end */ +#define ROWDATA(k) ((k)<0 || (k)>=es->rowlen ? 0 : es->rowdata[(k)]) + + /* + * See if we can find this new run length at a position where it + * also matches the last 'ncontig' runs we've seen. + */ + int i, newpos; + for (newpos = es->rowpos; newpos <= es->rowlen; newpos++) { + + if (ROWDATA(newpos) != r) + goto notfound; + + for (i = 1; i <= es->ncontig; i++) + if (ROWDATA(newpos - i) != ROWDATA(es->rowpos - i)) + goto notfound; + + es->rowpos = newpos+1; + es->ncontig++; + return TRUE; + + notfound:; + } + + return FALSE; + +#undef ROWDATA +} + +static int check_errors(const game_state *state, int i) +{ + int start, step, end, j; + int val, runlen; + struct errcheck_state aes, *es = &aes; + + es->rowlen = state->common->rowlen[i]; + es->rowdata = state->common->rowdata + state->common->rowsize * i; + /* Pretend that we've already encountered the initial zero run */ + es->ncontig = 1; + es->rowpos = 0; + + if (i < state->common->w) { + start = i; + step = state->common->w; + end = start + step * state->common->h; + } else { + start = (i - state->common->w) * state->common->w; + step = 1; + end = start + step * state->common->w; + } + + runlen = -1; + for (j = start - step; j <= end; j += step) { + if (j < start || j == end) + val = GRID_EMPTY; + else + val = state->grid[j]; + + if (val == GRID_UNKNOWN) { + runlen = -1; + es->ncontig = 0; + } else if (val == GRID_FULL) { + if (runlen >= 0) + runlen++; + } else if (val == GRID_EMPTY) { + if (runlen > 0) { + if (!errcheck_found_run(es, runlen)) + return TRUE; /* error! */ + } + runlen = 0; + } + } + + /* Signal end-of-row by sending errcheck_found_run the terminating + * zero run, which will be marked as contiguous with the previous + * run if and only if there hasn't been a GRID_UNKNOWN before. */ + if (!errcheck_found_run(es, 0)) + return TRUE; /* error at the last minute! */ + + return FALSE; /* no error */ +} + +/* ---------------------------------------------------------------------- + * Drawing routines. + */ + +static void game_compute_size(const game_params *params, int tilesize, + int *x, int *y) +{ + /* Ick: fake up `ds->tilesize' for macro expansion purposes */ + struct { int tilesize; } ads, *ds = &ads; + ads.tilesize = tilesize; + + *x = SIZE(params->w); + *y = SIZE(params->h); +} + +static void game_set_size(drawing *dr, game_drawstate *ds, + const game_params *params, int tilesize) +{ + ds->tilesize = tilesize; +} + +static float *game_colours(frontend *fe, int *ncolours) +{ + float *ret = snewn(3 * NCOLOURS, float); + int i; + + frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); + + for (i = 0; i < 3; i++) { + ret[COL_GRID * 3 + i] = 0.3F; + ret[COL_UNKNOWN * 3 + i] = 0.5F; + ret[COL_TEXT * 3 + i] = 0.0F; + ret[COL_FULL * 3 + i] = 0.0F; + ret[COL_EMPTY * 3 + i] = 1.0F; + } + ret[COL_CURSOR * 3 + 0] = 1.0F; + ret[COL_CURSOR * 3 + 1] = 0.25F; + ret[COL_CURSOR * 3 + 2] = 0.25F; + ret[COL_ERROR * 3 + 0] = 1.0F; + ret[COL_ERROR * 3 + 1] = 0.0F; + ret[COL_ERROR * 3 + 2] = 0.0F; + + *ncolours = NCOLOURS; + return ret; +} + +static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) +{ + struct game_drawstate *ds = snew(struct game_drawstate); + + ds->started = FALSE; + ds->w = state->common->w; + ds->h = state->common->h; + ds->visible = snewn(ds->w * ds->h, unsigned char); + ds->tilesize = 0; /* not decided yet */ + memset(ds->visible, 255, ds->w * ds->h); + ds->numcolours = snewn(ds->w + ds->h, unsigned char); + memset(ds->numcolours, 255, ds->w + ds->h); + ds->cur_x = ds->cur_y = 0; + + return ds; +} + +static void game_free_drawstate(drawing *dr, game_drawstate *ds) +{ + sfree(ds->visible); + sfree(ds); +} + +static void grid_square(drawing *dr, game_drawstate *ds, + int y, int x, int state, int cur) +{ + int xl, xr, yt, yb, dx, dy, dw, dh; + + draw_rect(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y), + TILE_SIZE, TILE_SIZE, COL_GRID); + + xl = (x % 5 == 0 ? 1 : 0); + yt = (y % 5 == 0 ? 1 : 0); + xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0); + yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0); + + dx = TOCOORD(ds->w, x) + 1 + xl; + dy = TOCOORD(ds->h, y) + 1 + yt; + dw = TILE_SIZE - xl - xr - 1; + dh = TILE_SIZE - yt - yb - 1; + + draw_rect(dr, dx, dy, dw, dh, + (state == GRID_FULL ? COL_FULL : + state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN)); + if (cur) { + draw_rect_outline(dr, dx, dy, dw, dh, COL_CURSOR); + draw_rect_outline(dr, dx+1, dy+1, dw-2, dh-2, COL_CURSOR); + } + + draw_update(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y), + TILE_SIZE, TILE_SIZE); +} + +/* + * Draw the numbers for a single row or column. + */ +static void draw_numbers(drawing *dr, game_drawstate *ds, + const game_state *state, int i, int erase, int colour) +{ + int rowlen = state->common->rowlen[i]; + int *rowdata = state->common->rowdata + state->common->rowsize * i; + int nfit; + int j; + + if (erase) { + if (i < state->common->w) { + draw_rect(dr, TOCOORD(state->common->w, i), 0, + TILE_SIZE, BORDER + TLBORDER(state->common->h) * TILE_SIZE, + COL_BACKGROUND); + } else { + draw_rect(dr, 0, TOCOORD(state->common->h, i - state->common->w), + BORDER + TLBORDER(state->common->w) * TILE_SIZE, TILE_SIZE, + COL_BACKGROUND); + } + } + + /* + * Normally I space the numbers out by the same distance as the + * tile size. However, if there are more numbers than available + * spaces, I have to squash them up a bit. + */ + if (i < state->common->w) + nfit = TLBORDER(state->common->h); + else + nfit = TLBORDER(state->common->w); + nfit = max(rowlen, nfit) - 1; + assert(nfit > 0); + + for (j = 0; j < rowlen; j++) { + int x, y; + char str[80]; + + if (i < state->common->w) { + x = TOCOORD(state->common->w, i); + y = BORDER + TILE_SIZE * (TLBORDER(state->common->h)-1); + y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->common->h)-1) / nfit; + } else { + y = TOCOORD(state->common->h, i - state->common->w); + x = BORDER + TILE_SIZE * (TLBORDER(state->common->w)-1); + x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->common->w)-1) / nfit; + } + + sprintf(str, "%d", rowdata[j]); + draw_text(dr, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE, + TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, colour, str); + } + + if (i < state->common->w) { + draw_update(dr, TOCOORD(state->common->w, i), 0, + TILE_SIZE, BORDER + TLBORDER(state->common->h) * TILE_SIZE); + } else { + draw_update(dr, 0, TOCOORD(state->common->h, i - state->common->w), + BORDER + TLBORDER(state->common->w) * TILE_SIZE, TILE_SIZE); + } +} + +static void game_redraw(drawing *dr, game_drawstate *ds, + const game_state *oldstate, const game_state *state, + int dir, const game_ui *ui, + float animtime, float flashtime) +{ + int i, j; + int x1, x2, y1, y2; + int cx, cy, cmoved; + + if (!ds->started) { + /* + * The initial contents of the window are not guaranteed + * and can vary with front ends. To be on the safe side, + * all games should start by drawing a big background- + * colour rectangle covering the whole window. + */ + draw_rect(dr, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND); + + /* + * Draw the grid outline. + */ + draw_rect(dr, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1, + ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3, + COL_GRID); + + ds->started = TRUE; + + draw_update(dr, 0, 0, SIZE(ds->w), SIZE(ds->h)); + } + + if (ui->dragging) { + x1 = min(ui->drag_start_x, ui->drag_end_x); + x2 = max(ui->drag_start_x, ui->drag_end_x); + y1 = min(ui->drag_start_y, ui->drag_end_y); + y2 = max(ui->drag_start_y, ui->drag_end_y); + } else { + x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */ + } + + if (ui->cur_visible) { + cx = ui->cur_x; cy = ui->cur_y; + } else { + cx = cy = -1; + } + cmoved = (cx != ds->cur_x || cy != ds->cur_y); + + /* + * Now draw any grid squares which have changed since last + * redraw. + */ + for (i = 0; i < ds->h; i++) { + for (j = 0; j < ds->w; j++) { + int val, cc = 0; + + /* + * Work out what state this square should be drawn in, + * taking any current drag operation into account. + */ + if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2 && + !state->common->immutable[i * state->common->w + j]) + val = ui->state; + else + val = state->grid[i * state->common->w + j]; + + if (cmoved) { + /* the cursor has moved; if we were the old or + * the new cursor position we need to redraw. */ + if (j == cx && i == cy) cc = 1; + if (j == ds->cur_x && i == ds->cur_y) cc = 1; + } + + /* + * Briefly invert everything twice during a completion + * flash. + */ + if (flashtime > 0 && + (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) && + val != GRID_UNKNOWN) + val = (GRID_FULL ^ GRID_EMPTY) ^ val; + + if (ds->visible[i * ds->w + j] != val || cc) { + grid_square(dr, ds, i, j, val, + (j == cx && i == cy)); + ds->visible[i * ds->w + j] = val; + } + } + } + ds->cur_x = cx; ds->cur_y = cy; + + /* + * Redraw any numbers which have changed their colour due to error + * indication. + */ + for (i = 0; i < state->common->w + state->common->h; i++) { + int colour = check_errors(state, i) ? COL_ERROR : COL_TEXT; + if (ds->numcolours[i] != colour) { + draw_numbers(dr, ds, state, i, TRUE, colour); + ds->numcolours[i] = colour; + } + } +} + +static float game_anim_length(const game_state *oldstate, + const game_state *newstate, int dir, game_ui *ui) +{ + return 0.0F; +} + +static float game_flash_length(const game_state *oldstate, + const game_state *newstate, int dir, game_ui *ui) +{ + if (!oldstate->completed && newstate->completed && + !oldstate->cheated && !newstate->cheated) + return FLASH_TIME; + return 0.0F; +} + +static int game_status(const game_state *state) +{ + return state->completed ? +1 : 0; +} + +static int game_timing_state(const game_state *state, game_ui *ui) +{ + return TRUE; +} + +static void game_print_size(const game_params *params, float *x, float *y) +{ + int pw, ph; + + /* + * I'll use 5mm squares by default. + */ + game_compute_size(params, 500, &pw, &ph); + *x = pw / 100.0F; + *y = ph / 100.0F; +} + +static void game_print(drawing *dr, const game_state *state, int tilesize) +{ + int w = state->common->w, h = state->common->h; + int ink = print_mono_colour(dr, 0); + int x, y, i; + + /* Ick: fake up `ds->tilesize' for macro expansion purposes */ + game_drawstate ads, *ds = &ads; + game_set_size(dr, ds, NULL, tilesize); + + /* + * Border. + */ + print_line_width(dr, TILE_SIZE / 16); + draw_rect_outline(dr, TOCOORD(w, 0), TOCOORD(h, 0), + w*TILE_SIZE, h*TILE_SIZE, ink); + + /* + * Grid. + */ + for (x = 1; x < w; x++) { + print_line_width(dr, TILE_SIZE / (x % 5 ? 128 : 24)); + draw_line(dr, TOCOORD(w, x), TOCOORD(h, 0), + TOCOORD(w, x), TOCOORD(h, h), ink); + } + for (y = 1; y < h; y++) { + print_line_width(dr, TILE_SIZE / (y % 5 ? 128 : 24)); + draw_line(dr, TOCOORD(w, 0), TOCOORD(h, y), + TOCOORD(w, w), TOCOORD(h, y), ink); + } + + /* + * Clues. + */ + for (i = 0; i < state->common->w + state->common->h; i++) + draw_numbers(dr, ds, state, i, FALSE, ink); + + /* + * Solution. + */ + print_line_width(dr, TILE_SIZE / 128); + for (y = 0; y < h; y++) + for (x = 0; x < w; x++) { + if (state->grid[y*w+x] == GRID_FULL) + draw_rect(dr, TOCOORD(w, x), TOCOORD(h, y), + TILE_SIZE, TILE_SIZE, ink); + else if (state->grid[y*w+x] == GRID_EMPTY) + draw_circle(dr, TOCOORD(w, x) + TILE_SIZE/2, + TOCOORD(h, y) + TILE_SIZE/2, + TILE_SIZE/12, ink, ink); + } +} + +#ifdef COMBINED +#define thegame pattern +#endif + +const struct game thegame = { + "Pattern", "games.pattern", "pattern", + default_params, + game_fetch_preset, NULL, + decode_params, + encode_params, + free_params, + dup_params, + TRUE, game_configure, custom_params, + validate_params, + new_game_desc, + validate_desc, + new_game, + dup_game, + free_game, + TRUE, solve_game, + TRUE, game_can_format_as_text_now, game_text_format, + new_ui, + free_ui, + encode_ui, + decode_ui, + game_changed_state, + interpret_move, + execute_move, + PREFERRED_TILE_SIZE, game_compute_size, game_set_size, + game_colours, + game_new_drawstate, + game_free_drawstate, + game_redraw, + game_anim_length, + game_flash_length, + game_status, + TRUE, FALSE, game_print_size, game_print, + FALSE, /* wants_statusbar */ + FALSE, game_timing_state, + REQUIRE_RBUTTON, /* flags */ +}; + +#ifdef STANDALONE_SOLVER + +int main(int argc, char **argv) +{ + game_params *p; + game_state *s; + char *id = NULL, *desc, *err; + + while (--argc > 0) { + char *p = *++argv; + if (*p == '-') { + if (!strcmp(p, "-v")) { + verbose = TRUE; + } else { + fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p); + return 1; + } + } else { + id = p; + } + } + + if (!id) { + fprintf(stderr, "usage: %s \n", argv[0]); + return 1; + } + + desc = strchr(id, ':'); + if (!desc) { + fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]); + return 1; + } + *desc++ = '\0'; + + p = default_params(); + decode_params(p, id); + err = validate_desc(p, desc); + if (err) { + fprintf(stderr, "%s: %s\n", argv[0], err); + return 1; + } + s = new_game(NULL, p, desc); + + { + int w = p->w, h = p->h, i, j, max, cluewid = 0; + unsigned char *matrix, *workspace; + unsigned int *changed_h, *changed_w; + int *rowdata; + + matrix = snewn(w*h, unsigned char); + max = max(w, h); + workspace = snewn(max*7, unsigned char); + changed_h = snewn(max+1, unsigned int); + changed_w = snewn(max+1, unsigned int); + rowdata = snewn(max+1, int); + + if (verbose) { + int thiswid; + /* + * Work out the maximum text width of the clue numbers + * in a row or column, so we can print the solver's + * working in a nicely lined up way. + */ + for (i = 0; i < (w+h); i++) { + char buf[80]; + for (thiswid = -1, j = 0; j < s->common->rowlen[i]; j++) + thiswid += sprintf + (buf, " %d", + s->common->rowdata[s->common->rowsize*i+j]); + if (cluewid < thiswid) + cluewid = thiswid; + } + } + + solve_puzzle(s, NULL, w, h, matrix, workspace, + changed_h, changed_w, rowdata, cluewid); + + for (i = 0; i < h; i++) { + for (j = 0; j < w; j++) { + int c = (matrix[i*w+j] == UNKNOWN ? '?' : + matrix[i*w+j] == BLOCK ? '#' : + matrix[i*w+j] == DOT ? '.' : + '!'); + putchar(c); + } + printf("\n"); + } + } + + return 0; +} + +#endif + +#ifdef STANDALONE_PICTURE_GENERATOR + +/* + * Main program for the standalone picture generator. To use it, + * simply provide it with an XBM-format bitmap file (note XBM, not + * XPM) on standard input, and it will output a game ID in return. + * For example: + * + * $ ./patternpicture < calligraphic-A.xbm + * 15x15:2/4/2/2/2/3/3/3.1/3.1/3.1/11/14/12/6/1/2/2/3/4/5/1.3/2.3/1.3/2.3/1.4/9/1.1.3/2.2.3/5.4/3.2 + * + * That looks easy, of course - all the program has done is to count + * up the clue numbers! But in fact, it's done more than that: it's + * also checked that the result is uniquely soluble from just the + * numbers. If it hadn't been, then it would have also left some + * filled squares in the playing area as extra clues. + * + * $ ./patternpicture < cube.xbm + * 15x15:10/2.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.10/1.1.1/1.1.1/1.1.1/2.1/10/10/1.2/1.1.1/1.1.1/1.1.1/10.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.2/10,TNINzzzzGNzw + * + * This enables a reasonably convenient design workflow for coming up + * with pictorial Pattern puzzles which _are_ uniquely soluble without + * those inelegant pre-filled squares. Fire up a bitmap editor (X11 + * bitmap(1) is good enough), save a trial .xbm, and then test it by + * running a command along the lines of + * + * $ ./pattern $(./patternpicture < test.xbm) + * + * If the resulting window pops up with some pre-filled squares, then + * that tells you which parts of the image are giving rise to + * ambiguities, so try making tweaks in those areas, try the test + * command again, and see if it helps. Once you have a design for + * which the Pattern starting grid comes out empty, there's your game + * ID. + */ + +#include + +int main(int argc, char **argv) +{ + game_params *par; + char *params, *desc; + random_state *rs; + time_t seed = time(NULL); + char buf[4096]; + int i; + int x, y; + + par = default_params(); + if (argc > 1) + decode_params(par, argv[1]); /* get difficulty */ + par->w = par->h = -1; + + /* + * Now read an XBM file from standard input. This is simple and + * hacky and will do very little error detection, so don't feed + * it bogus data. + */ + picture = NULL; + x = y = 0; + while (fgets(buf, sizeof(buf), stdin)) { + buf[strcspn(buf, "\r\n")] = '\0'; + if (!strncmp(buf, "#define", 7)) { + /* + * Lines starting `#define' give the width and height. + */ + char *num = buf + strlen(buf); + char *symend; + + while (num > buf && isdigit((unsigned char)num[-1])) + num--; + symend = num; + while (symend > buf && isspace((unsigned char)symend[-1])) + symend--; + + if (symend-5 >= buf && !strncmp(symend-5, "width", 5)) + par->w = atoi(num); + else if (symend-6 >= buf && !strncmp(symend-6, "height", 6)) + par->h = atoi(num); + } else { + /* + * Otherwise, break the string up into words and take + * any word of the form `0x' plus hex digits to be a + * byte. + */ + char *p, *wordstart; + + if (!picture) { + if (par->w < 0 || par->h < 0) { + printf("failed to read width and height\n"); + return 1; + } + picture = snewn(par->w * par->h, unsigned char); + for (i = 0; i < par->w * par->h; i++) + picture[i] = GRID_UNKNOWN; + } + + p = buf; + while (*p) { + while (*p && (*p == ',' || isspace((unsigned char)*p))) + p++; + wordstart = p; + while (*p && !(*p == ',' || *p == '}' || + isspace((unsigned char)*p))) + p++; + if (*p) + *p++ = '\0'; + + if (wordstart[0] == '0' && + (wordstart[1] == 'x' || wordstart[1] == 'X') && + !wordstart[2 + strspn(wordstart+2, + "0123456789abcdefABCDEF")]) { + unsigned long byte = strtoul(wordstart+2, NULL, 16); + for (i = 0; i < 8; i++) { + int bit = (byte >> i) & 1; + if (y < par->h && x < par->w) + picture[y * par->w + x] = + bit ? GRID_FULL : GRID_EMPTY; + x++; + } + + if (x >= par->w) { + x = 0; + y++; + } + } + } + } + } + + for (i = 0; i < par->w * par->h; i++) + if (picture[i] == GRID_UNKNOWN) { + fprintf(stderr, "failed to read enough bitmap data\n"); + return 1; + } + + rs = random_new((void*)&seed, sizeof(time_t)); + + desc = new_game_desc(par, rs, NULL, FALSE); + params = encode_params(par, FALSE); + printf("%s:%s\n", params, desc); + + sfree(desc); + sfree(params); + free_params(par); + random_free(rs); + + return 0; +} + +#endif + +/* vim: set shiftwidth=4 tabstop=8: */ -- cgit v1.2.3