From 67f7ecf731d14f732db9d685aefd011f770d21a3 Mon Sep 17 00:00:00 2001 From: Mohamed Tarek Date: Thu, 29 Apr 2010 15:14:43 +0000 Subject: Revert r25739 which added libwmapro to apps/codecs, in preparation to commit the unmodified ffmpeg files first, for the sake of a consistent/complete svn history. git-svn-id: svn://svn.rockbox.org/rockbox/trunk@25758 a1c6a512-1295-4272-9138-f99709370657 --- apps/codecs/libwmapro/wmaprodec.c | 1594 ------------------------------------- 1 file changed, 1594 deletions(-) delete mode 100644 apps/codecs/libwmapro/wmaprodec.c (limited to 'apps/codecs/libwmapro/wmaprodec.c') diff --git a/apps/codecs/libwmapro/wmaprodec.c b/apps/codecs/libwmapro/wmaprodec.c deleted file mode 100644 index 66d926d813..0000000000 --- a/apps/codecs/libwmapro/wmaprodec.c +++ /dev/null @@ -1,1594 +0,0 @@ -/* - * Wmapro compatible decoder - * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion - * Copyright (c) 2008 - 2009 Sascha Sommer, Benjamin Larsson - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file libavcodec/wmaprodec.c - * @brief wmapro decoder implementation - * Wmapro is an MDCT based codec comparable to wma standard or AAC. - * The decoding therefore consists of the following steps: - * - bitstream decoding - * - reconstruction of per-channel data - * - rescaling and inverse quantization - * - IMDCT - * - windowing and overlapp-add - * - * The compressed wmapro bitstream is split into individual packets. - * Every such packet contains one or more wma frames. - * The compressed frames may have a variable length and frames may - * cross packet boundaries. - * Common to all wmapro frames is the number of samples that are stored in - * a frame. - * The number of samples and a few other decode flags are stored - * as extradata that has to be passed to the decoder. - * - * The wmapro frames themselves are again split into a variable number of - * subframes. Every subframe contains the data for 2^N time domain samples - * where N varies between 7 and 12. - * - * Example wmapro bitstream (in samples): - * - * || packet 0 || packet 1 || packet 2 packets - * --------------------------------------------------- - * || frame 0 || frame 1 || frame 2 || frames - * --------------------------------------------------- - * || | | || | | | || || subframes of channel 0 - * --------------------------------------------------- - * || | | || | | | || || subframes of channel 1 - * --------------------------------------------------- - * - * The frame layouts for the individual channels of a wma frame does not need - * to be the same. - * - * However, if the offsets and lengths of several subframes of a frame are the - * same, the subframes of the channels can be grouped. - * Every group may then use special coding techniques like M/S stereo coding - * to improve the compression ratio. These channel transformations do not - * need to be applied to a whole subframe. Instead, they can also work on - * individual scale factor bands (see below). - * The coefficients that carry the audio signal in the frequency domain - * are transmitted as huffman-coded vectors with 4, 2 and 1 elements. - * In addition to that, the encoder can switch to a runlevel coding scheme - * by transmitting subframe_length / 128 zero coefficients. - * - * Before the audio signal can be converted to the time domain, the - * coefficients have to be rescaled and inverse quantized. - * A subframe is therefore split into several scale factor bands that get - * scaled individually. - * Scale factors are submitted for every frame but they might be shared - * between the subframes of a channel. Scale factors are initially DPCM-coded. - * Once scale factors are shared, the differences are transmitted as runlevel - * codes. - * Every subframe length and offset combination in the frame layout shares a - * common quantization factor that can be adjusted for every channel by a - * modifier. - * After the inverse quantization, the coefficients get processed by an IMDCT. - * The resulting values are then windowed with a sine window and the first half - * of the values are added to the second half of the output from the previous - * subframe in order to reconstruct the output samples. - */ - -#include "avcodec.h" -#include "internal.h" -#include "get_bits.h" -#include "put_bits.h" -#include "wmaprodata.h" -#include "dsputil.h" -#include "wma.h" - -/* Some defines to make it compile */ -#define AVERROR_INVALIDDATA -1 -#define AVERROR_PATCHWELCOME -2 -#ifndef M_PI -#define M_PI 3.14159265358979323846 /* pi */ -#endif -#define av_log_ask_for_sample(...) - -/** current decoder limitations */ -#define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels -#define MAX_SUBFRAMES 32 ///< max number of subframes per channel -#define MAX_BANDS 29 ///< max number of scale factor bands -#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size - -#define WMAPRO_BLOCK_MAX_BITS 12 ///< log2 of max block size -#define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size -#define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1) ///< possible block sizes - - -#define VLCBITS 9 -#define SCALEVLCBITS 8 -#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS) -#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS) -#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS) -#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS) -#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS) - -static VLC sf_vlc; ///< scale factor DPCM vlc -static VLC sf_rl_vlc; ///< scale factor run length vlc -static VLC vec4_vlc; ///< 4 coefficients per symbol -static VLC vec2_vlc; ///< 2 coefficients per symbol -static VLC vec1_vlc; ///< 1 coefficient per symbol -static VLC coef_vlc[2]; ///< coefficient run length vlc codes -static float sin64[33]; ///< sinus table for decorrelation - -/** - * @brief frame specific decoder context for a single channel - */ -typedef struct { - int16_t prev_block_len; ///< length of the previous block - uint8_t transmit_coefs; - uint8_t num_subframes; - uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples - uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame - uint8_t cur_subframe; ///< current subframe number - uint16_t decoded_samples; ///< number of already processed samples - uint8_t grouped; ///< channel is part of a group - int quant_step; ///< quantization step for the current subframe - int8_t reuse_sf; ///< share scale factors between subframes - int8_t scale_factor_step; ///< scaling step for the current subframe - int max_scale_factor; ///< maximum scale factor for the current subframe - int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values - int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling) - int* scale_factors; ///< pointer to the scale factor values used for decoding - uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block - float* coeffs; ///< pointer to the subframe decode buffer - DECLARE_ALIGNED(16, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer -} WMAProChannelCtx; - -/** - * @brief channel group for channel transformations - */ -typedef struct { - uint8_t num_channels; ///< number of channels in the group - int8_t transform; ///< transform on / off - int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band - float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS]; - float* channel_data[WMAPRO_MAX_CHANNELS]; ///< transformation coefficients -} WMAProChannelGrp; - -/** - * @brief main decoder context - */ -typedef struct WMAProDecodeCtx { - /* generic decoder variables */ - AVCodecContext* avctx; ///< codec context for av_log - DSPContext dsp; ///< accelerated DSP functions - uint8_t frame_data[MAX_FRAMESIZE + - FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data - PutBitContext pb; ///< context for filling the frame_data buffer - FFTContext mdct_ctx[WMAPRO_BLOCK_SIZES]; ///< MDCT context per block size - DECLARE_ALIGNED(16, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer - float* windows[WMAPRO_BLOCK_SIZES]; ///< windows for the different block sizes - - /* frame size dependent frame information (set during initialization) */ - uint32_t decode_flags; ///< used compression features - uint8_t len_prefix; ///< frame is prefixed with its length - uint8_t dynamic_range_compression; ///< frame contains DRC data - uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0]) - uint16_t samples_per_frame; ///< number of samples to output - uint16_t log2_frame_size; - int8_t num_channels; ///< number of channels in the stream (same as AVCodecContext.num_channels) - int8_t lfe_channel; ///< lfe channel index - uint8_t max_num_subframes; - uint8_t subframe_len_bits; ///< number of bits used for the subframe length - uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1 - uint16_t min_samples_per_subframe; - int8_t num_sfb[WMAPRO_BLOCK_SIZES]; ///< scale factor bands per block size - int16_t sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4) - int8_t sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix - int16_t subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values - - /* packet decode state */ - GetBitContext pgb; ///< bitstream reader context for the packet - uint8_t packet_offset; ///< frame offset in the packet - uint8_t packet_sequence_number; ///< current packet number - int num_saved_bits; ///< saved number of bits - int frame_offset; ///< frame offset in the bit reservoir - int subframe_offset; ///< subframe offset in the bit reservoir - uint8_t packet_loss; ///< set in case of bitstream error - uint8_t packet_done; ///< set when a packet is fully decoded - - /* frame decode state */ - uint32_t frame_num; ///< current frame number (not used for decoding) - GetBitContext gb; ///< bitstream reader context - int buf_bit_size; ///< buffer size in bits - float* samples; ///< current samplebuffer pointer - float* samples_end; ///< maximum samplebuffer pointer - uint8_t drc_gain; ///< gain for the DRC tool - int8_t skip_frame; ///< skip output step - int8_t parsed_all_subframes; ///< all subframes decoded? - - /* subframe/block decode state */ - int16_t subframe_len; ///< current subframe length - int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe - int8_t channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS]; - int8_t num_bands; ///< number of scale factor bands - int16_t* cur_sfb_offsets; ///< sfb offsets for the current block - uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables - int8_t esc_len; ///< length of escaped coefficients - - uint8_t num_chgroups; ///< number of channel groups - WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS]; ///< channel group information - - WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS]; ///< per channel data -} WMAProDecodeCtx; - - -/** - *@brief helper function to print the most important members of the context - *@param s context - */ -static void av_cold dump_context(WMAProDecodeCtx *s) -{ -#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b); -#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b); - - PRINT("ed sample bit depth", s->bits_per_sample); - PRINT_HEX("ed decode flags", s->decode_flags); - PRINT("samples per frame", s->samples_per_frame); - PRINT("log2 frame size", s->log2_frame_size); - PRINT("max num subframes", s->max_num_subframes); - PRINT("len prefix", s->len_prefix); - PRINT("num channels", s->num_channels); -} - -/** - *@brief Uninitialize the decoder and free all resources. - *@param avctx codec context - *@return 0 on success, < 0 otherwise - */ -static av_cold int decode_end(AVCodecContext *avctx) -{ - WMAProDecodeCtx *s = avctx->priv_data; - int i; - - for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) - ff_mdct_end(&s->mdct_ctx[i]); - - return 0; -} - -/** - *@brief Initialize the decoder. - *@param avctx codec context - *@return 0 on success, -1 otherwise - */ -static av_cold int decode_init(AVCodecContext *avctx) -{ - WMAProDecodeCtx *s = avctx->priv_data; - uint8_t *edata_ptr = avctx->extradata; - unsigned int channel_mask; - int i; - int log2_max_num_subframes; - int num_possible_block_sizes; - - s->avctx = avctx; - dsputil_init(&s->dsp, avctx); - init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); - - avctx->sample_fmt = SAMPLE_FMT_FLT; - - if (avctx->extradata_size >= 18) { - s->decode_flags = AV_RL16(edata_ptr+14); - channel_mask = AV_RL32(edata_ptr+2); - s->bits_per_sample = AV_RL16(edata_ptr); - /** dump the extradata */ - for (i = 0; i < avctx->extradata_size; i++) - dprintf(avctx, "[%x] ", avctx->extradata[i]); - dprintf(avctx, "\n"); - - } else { - av_log_ask_for_sample(avctx, "Unknown extradata size\n"); - return AVERROR_INVALIDDATA; - } - - /** generic init */ - s->log2_frame_size = av_log2(avctx->block_align) + 4; - - /** frame info */ - s->skip_frame = 1; /** skip first frame */ - s->packet_loss = 1; - s->len_prefix = (s->decode_flags & 0x40); - - if (!s->len_prefix) { - av_log_ask_for_sample(avctx, "no length prefix\n"); - return AVERROR_INVALIDDATA; - } - - /** get frame len */ - s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate, - 3, s->decode_flags); - - /** init previous block len */ - for (i = 0; i < avctx->channels; i++) - s->channel[i].prev_block_len = s->samples_per_frame; - - /** subframe info */ - log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3); - s->max_num_subframes = 1 << log2_max_num_subframes; - if (s->max_num_subframes == 16) - s->max_subframe_len_bit = 1; - s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1; - - num_possible_block_sizes = log2_max_num_subframes + 1; - s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes; - s->dynamic_range_compression = (s->decode_flags & 0x80); - - if (s->max_num_subframes > MAX_SUBFRAMES) { - av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n", - s->max_num_subframes); - return AVERROR_INVALIDDATA; - } - - s->num_channels = avctx->channels; - - /** extract lfe channel position */ - s->lfe_channel = -1; - - if (channel_mask & 8) { - unsigned int mask; - for (mask = 1; mask < 16; mask <<= 1) { - if (channel_mask & mask) - ++s->lfe_channel; - } - } - - if (s->num_channels < 0) { - av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n", s->num_channels); - return AVERROR_INVALIDDATA; - } else if (s->num_channels > WMAPRO_MAX_CHANNELS) { - av_log_ask_for_sample(avctx, "unsupported number of channels\n"); - return AVERROR_PATCHWELCOME; - } - - INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE, - scale_huffbits, 1, 1, - scale_huffcodes, 2, 2, 616); - - INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE, - scale_rl_huffbits, 1, 1, - scale_rl_huffcodes, 4, 4, 1406); - - INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE, - coef0_huffbits, 1, 1, - coef0_huffcodes, 4, 4, 2108); - - INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE, - coef1_huffbits, 1, 1, - coef1_huffcodes, 4, 4, 3912); - - INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE, - vec4_huffbits, 1, 1, - vec4_huffcodes, 2, 2, 604); - - INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE, - vec2_huffbits, 1, 1, - vec2_huffcodes, 2, 2, 562); - - INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE, - vec1_huffbits, 1, 1, - vec1_huffcodes, 2, 2, 562); - - /** calculate number of scale factor bands and their offsets - for every possible block size */ - for (i = 0; i < num_possible_block_sizes; i++) { - int subframe_len = s->samples_per_frame >> i; - int x; - int band = 1; - - s->sfb_offsets[i][0] = 0; - - for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) { - int offset = (subframe_len * 2 * critical_freq[x]) - / s->avctx->sample_rate + 2; - offset &= ~3; - if (offset > s->sfb_offsets[i][band - 1]) - s->sfb_offsets[i][band++] = offset; - } - s->sfb_offsets[i][band - 1] = subframe_len; - s->num_sfb[i] = band - 1; - } - - - /** Scale factors can be shared between blocks of different size - as every block has a different scale factor band layout. - The matrix sf_offsets is needed to find the correct scale factor. - */ - - for (i = 0; i < num_possible_block_sizes; i++) { - int b; - for (b = 0; b < s->num_sfb[i]; b++) { - int x; - int offset = ((s->sfb_offsets[i][b] - + s->sfb_offsets[i][b + 1] - 1) << i) >> 1; - for (x = 0; x < num_possible_block_sizes; x++) { - int v = 0; - while (s->sfb_offsets[x][v + 1] << x < offset) - ++v; - s->sf_offsets[i][x][b] = v; - } - } - } - - /** init MDCT, FIXME: only init needed sizes */ - for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) - ff_mdct_init(&s->mdct_ctx[i], BLOCK_MIN_BITS+1+i, 1, - 1.0 / (1 << (BLOCK_MIN_BITS + i - 1)) - / (1 << (s->bits_per_sample - 1))); - - /** init MDCT windows: simple sinus window */ - for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) { - const int win_idx = WMAPRO_BLOCK_MAX_BITS - i; - ff_init_ff_sine_windows(win_idx); - s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx]; - } - - /** calculate subwoofer cutoff values */ - for (i = 0; i < num_possible_block_sizes; i++) { - int block_size = s->samples_per_frame >> i; - int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1) - / s->avctx->sample_rate; - s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size); - } - - /** calculate sine values for the decorrelation matrix */ - for (i = 0; i < 33; i++) - sin64[i] = sin(i*M_PI / 64.0); -#if 0 - if (avctx->debug & FF_DEBUG_BITSTREAM) - dump_context(s); -#endif - - avctx->channel_layout = channel_mask; - return 0; -} - -/** - *@brief Decode the subframe length. - *@param s context - *@param offset sample offset in the frame - *@return decoded subframe length on success, < 0 in case of an error - */ -static int decode_subframe_length(WMAProDecodeCtx *s, int offset) -{ - int frame_len_shift = 0; - int subframe_len; - - /** no need to read from the bitstream when only one length is possible */ - if (offset == s->samples_per_frame - s->min_samples_per_subframe) - return s->min_samples_per_subframe; - - /** 1 bit indicates if the subframe is of maximum length */ - if (s->max_subframe_len_bit) { - if (get_bits1(&s->gb)) - frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1); - } else - frame_len_shift = get_bits(&s->gb, s->subframe_len_bits); - - subframe_len = s->samples_per_frame >> frame_len_shift; - - /** sanity check the length */ - if (subframe_len < s->min_samples_per_subframe || - subframe_len > s->samples_per_frame) { - av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n", - subframe_len); - return AVERROR_INVALIDDATA; - } - return subframe_len; -} - -/** - *@brief Decode how the data in the frame is split into subframes. - * Every WMA frame contains the encoded data for a fixed number of - * samples per channel. The data for every channel might be split - * into several subframes. This function will reconstruct the list of - * subframes for every channel. - * - * If the subframes are not evenly split, the algorithm estimates the - * channels with the lowest number of total samples. - * Afterwards, for each of these channels a bit is read from the - * bitstream that indicates if the channel contains a subframe with the - * next subframe size that is going to be read from the bitstream or not. - * If a channel contains such a subframe, the subframe size gets added to - * the channel's subframe list. - * The algorithm repeats these steps until the frame is properly divided - * between the individual channels. - * - *@param s context - *@return 0 on success, < 0 in case of an error - */ -static int decode_tilehdr(WMAProDecodeCtx *s) -{ - uint16_t num_samples[WMAPRO_MAX_CHANNELS]; /** sum of samples for all currently known subframes of a channel */ - uint8_t contains_subframe[WMAPRO_MAX_CHANNELS]; /** flag indicating if a channel contains the current subframe */ - int channels_for_cur_subframe = s->num_channels; /** number of channels that contain the current subframe */ - int fixed_channel_layout = 0; /** flag indicating that all channels use the same subframe offsets and sizes */ - int min_channel_len = 0; /** smallest sum of samples (channels with this length will be processed first) */ - int c; - - /* Should never consume more than 3073 bits (256 iterations for the - * while loop when always the minimum amount of 128 samples is substracted - * from missing samples in the 8 channel case). - * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4) - */ - - /** reset tiling information */ - for (c = 0; c < s->num_channels; c++) - s->channel[c].num_subframes = 0; - - memset(num_samples, 0, sizeof(num_samples)); - - if (s->max_num_subframes == 1 || get_bits1(&s->gb)) - fixed_channel_layout = 1; - - /** loop until the frame data is split between the subframes */ - do { - int subframe_len; - - /** check which channels contain the subframe */ - for (c = 0; c < s->num_channels; c++) { - if (num_samples[c] == min_channel_len) { - if (fixed_channel_layout || channels_for_cur_subframe == 1 || - (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe)) - contains_subframe[c] = 1; - else - contains_subframe[c] = get_bits1(&s->gb); - } else - contains_subframe[c] = 0; - } - - /** get subframe length, subframe_len == 0 is not allowed */ - if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0) - return AVERROR_INVALIDDATA; - - /** add subframes to the individual channels and find new min_channel_len */ - min_channel_len += subframe_len; - for (c = 0; c < s->num_channels; c++) { - WMAProChannelCtx* chan = &s->channel[c]; - - if (contains_subframe[c]) { - if (chan->num_subframes >= MAX_SUBFRAMES) { - av_log(s->avctx, AV_LOG_ERROR, - "broken frame: num subframes > 31\n"); - return AVERROR_INVALIDDATA; - } - chan->subframe_len[chan->num_subframes] = subframe_len; - num_samples[c] += subframe_len; - ++chan->num_subframes; - if (num_samples[c] > s->samples_per_frame) { - av_log(s->avctx, AV_LOG_ERROR, "broken frame: " - "channel len > samples_per_frame\n"); - return AVERROR_INVALIDDATA; - } - } else if (num_samples[c] <= min_channel_len) { - if (num_samples[c] < min_channel_len) { - channels_for_cur_subframe = 0; - min_channel_len = num_samples[c]; - } - ++channels_for_cur_subframe; - } - } - } while (min_channel_len < s->samples_per_frame); - - for (c = 0; c < s->num_channels; c++) { - int i; - int offset = 0; - for (i = 0; i < s->channel[c].num_subframes; i++) { - dprintf(s->avctx, "frame[%i] channel[%i] subframe[%i]" - " len %i\n", s->frame_num, c, i, - s->channel[c].subframe_len[i]); - s->channel[c].subframe_offset[i] = offset; - offset += s->channel[c].subframe_len[i]; - } - } - - return 0; -} - -/** - *@brief Calculate a decorrelation matrix from the bitstream parameters. - *@param s codec context - *@param chgroup channel group for which the matrix needs to be calculated - */ -static void decode_decorrelation_matrix(WMAProDecodeCtx *s, - WMAProChannelGrp *chgroup) -{ - int i; - int offset = 0; - int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS]; - memset(chgroup->decorrelation_matrix, 0, s->num_channels * - s->num_channels * sizeof(*chgroup->decorrelation_matrix)); - - for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++) - rotation_offset[i] = get_bits(&s->gb, 6); - - for (i = 0; i < chgroup->num_channels; i++) - chgroup->decorrelation_matrix[chgroup->num_channels * i + i] = - get_bits1(&s->gb) ? 1.0 : -1.0; - - for (i = 1; i < chgroup->num_channels; i++) { - int x; - for (x = 0; x < i; x++) { - int y; - for (y = 0; y < i + 1; y++) { - float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y]; - float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y]; - int n = rotation_offset[offset + x]; - float sinv; - float cosv; - - if (n < 32) { - sinv = sin64[n]; - cosv = sin64[32 - n]; - } else { - sinv = sin64[64 - n]; - cosv = -sin64[n - 32]; - } - - chgroup->decorrelation_matrix[y + x * chgroup->num_channels] = - (v1 * sinv) - (v2 * cosv); - chgroup->decorrelation_matrix[y + i * chgroup->num_channels] = - (v1 * cosv) + (v2 * sinv); - } - } - offset += i; - } -} - -/** - *@brief Decode channel transformation parameters - *@param s codec context - *@return 0 in case of success, < 0 in case of bitstream errors - */ -static int decode_channel_transform(WMAProDecodeCtx* s) -{ - int i; - /* should never consume more than 1921 bits for the 8 channel case - * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS - * + MAX_CHANNELS + MAX_BANDS + 1) - */ - - /** in the one channel case channel transforms are pointless */ - s->num_chgroups = 0; - if (s->num_channels > 1) { - int remaining_channels = s->channels_for_cur_subframe; - - if (get_bits1(&s->gb)) { - av_log_ask_for_sample(s->avctx, - "unsupported channel transform bit\n"); - return AVERROR_INVALIDDATA; - } - - for (s->num_chgroups = 0; remaining_channels && - s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) { - WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups]; - float** channel_data = chgroup->channel_data; - chgroup->num_channels = 0; - chgroup->transform = 0; - - /** decode channel mask */ - if (remaining_channels > 2) { - for (i = 0; i < s->channels_for_cur_subframe; i++) { - int channel_idx = s->channel_indexes_for_cur_subframe[i]; - if (!s->channel[channel_idx].grouped - && get_bits1(&s->gb)) { - ++chgroup->num_channels; - s->channel[channel_idx].grouped = 1; - *channel_data++ = s->channel[channel_idx].coeffs; - } - } - } else { - chgroup->num_channels = remaining_channels; - for (i = 0; i < s->channels_for_cur_subframe; i++) { - int channel_idx = s->channel_indexes_for_cur_subframe[i]; - if (!s->channel[channel_idx].grouped) - *channel_data++ = s->channel[channel_idx].coeffs; - s->channel[channel_idx].grouped = 1; - } - } - - /** decode transform type */ - if (chgroup->num_channels == 2) { - if (get_bits1(&s->gb)) { - if (get_bits1(&s->gb)) { - av_log_ask_for_sample(s->avctx, - "unsupported channel transform type\n"); - } - } else { - chgroup->transform = 1; - if (s->num_channels == 2) { - chgroup->decorrelation_matrix[0] = 1.0; - chgroup->decorrelation_matrix[1] = -1.0; - chgroup->decorrelation_matrix[2] = 1.0; - chgroup->decorrelation_matrix[3] = 1.0; - } else { - /** cos(pi/4) */ - chgroup->decorrelation_matrix[0] = 0.70703125; - chgroup->decorrelation_matrix[1] = -0.70703125; - chgroup->decorrelation_matrix[2] = 0.70703125; - chgroup->decorrelation_matrix[3] = 0.70703125; - } - } - } else if (chgroup->num_channels > 2) { - if (get_bits1(&s->gb)) { - chgroup->transform = 1; - if (get_bits1(&s->gb)) { - decode_decorrelation_matrix(s, chgroup); - } else { - /** FIXME: more than 6 coupled channels not supported */ - if (chgroup->num_channels > 6) { - av_log_ask_for_sample(s->avctx, - "coupled channels > 6\n"); - } else { - memcpy(chgroup->decorrelation_matrix, - default_decorrelation[chgroup->num_channels], - chgroup->num_channels * chgroup->num_channels * - sizeof(*chgroup->decorrelation_matrix)); - } - } - } - } - - /** decode transform on / off */ - if (chgroup->transform) { - if (!get_bits1(&s->gb)) { - int i; - /** transform can be enabled for individual bands */ - for (i = 0; i < s->num_bands; i++) { - chgroup->transform_band[i] = get_bits1(&s->gb); - } - } else { - memset(chgroup->transform_band, 1, s->num_bands); - } - } - remaining_channels -= chgroup->num_channels; - } - } - return 0; -} - -/** - *@brief Extract the coefficients from the bitstream. - *@param s codec context - *@param c current channel number - *@return 0 on success, < 0 in case of bitstream errors - */ -static int decode_coeffs(WMAProDecodeCtx *s, int c) -{ - /* Integers 0..15 as single-precision floats. The table saves a - costly int to float conversion, and storing the values as - integers allows fast sign-flipping. */ - static const int fval_tab[16] = { - 0x00000000, 0x3f800000, 0x40000000, 0x40400000, - 0x40800000, 0x40a00000, 0x40c00000, 0x40e00000, - 0x41000000, 0x41100000, 0x41200000, 0x41300000, - 0x41400000, 0x41500000, 0x41600000, 0x41700000, - }; - int vlctable; - VLC* vlc; - WMAProChannelCtx* ci = &s->channel[c]; - int rl_mode = 0; - int cur_coeff = 0; - int num_zeros = 0; - const uint16_t* run; - const float* level; - - dprintf(s->avctx, "decode coefficients for channel %i\n", c); - - vlctable = get_bits1(&s->gb); - vlc = &coef_vlc[vlctable]; - - if (vlctable) { - run = coef1_run; - level = coef1_level; - } else { - run = coef0_run; - level = coef0_level; - } - - /** decode vector coefficients (consumes up to 167 bits per iteration for - 4 vector coded large values) */ - while (!rl_mode && cur_coeff + 3 < s->subframe_len) { - int vals[4]; - int i; - unsigned int idx; - - idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH); - - if (idx == HUFF_VEC4_SIZE - 1) { - for (i = 0; i < 4; i += 2) { - idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH); - if (idx == HUFF_VEC2_SIZE - 1) { - int v0, v1; - v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); - if (v0 == HUFF_VEC1_SIZE - 1) - v0 += ff_wma_get_large_val(&s->gb); - v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); - if (v1 == HUFF_VEC1_SIZE - 1) - v1 += ff_wma_get_large_val(&s->gb); - ((float*)vals)[i ] = v0; - ((float*)vals)[i+1] = v1; - } else { - vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ]; - vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF]; - } - } - } else { - vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ]; - vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF]; - vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF]; - vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF]; - } - - /** decode sign */ - for (i = 0; i < 4; i++) { - if (vals[i]) { - int sign = get_bits1(&s->gb) - 1; - *(uint32_t*)&ci->coeffs[cur_coeff] = vals[i] ^ sign<<31; - num_zeros = 0; - } else { - ci->coeffs[cur_coeff] = 0; - /** switch to run level mode when subframe_len / 128 zeros - were found in a row */ - rl_mode |= (++num_zeros > s->subframe_len >> 8); - } - ++cur_coeff; - } - } - - /** decode run level coded coefficients */ - if (rl_mode) { - memset(&ci->coeffs[cur_coeff], 0, - sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff)); - if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc, - level, run, 1, ci->coeffs, - cur_coeff, s->subframe_len, - s->subframe_len, s->esc_len, 0)) - return AVERROR_INVALIDDATA; - } - - return 0; -} - -/** - *@brief Extract scale factors from the bitstream. - *@param s codec context - *@return 0 on success, < 0 in case of bitstream errors - */ -static int decode_scale_factors(WMAProDecodeCtx* s) -{ - int i; - - /** should never consume more than 5344 bits - * MAX_CHANNELS * (1 + MAX_BANDS * 23) - */ - - for (i = 0; i < s->channels_for_cur_subframe; i++) { - int c = s->channel_indexes_for_cur_subframe[i]; - int* sf; - int* sf_end; - s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx]; - sf_end = s->channel[c].scale_factors + s->num_bands; - - /** resample scale factors for the new block size - * as the scale factors might need to be resampled several times - * before some new values are transmitted, a backup of the last - * transmitted scale factors is kept in saved_scale_factors - */ - if (s->channel[c].reuse_sf) { - const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx]; - int b; - for (b = 0; b < s->num_bands; b++) - s->channel[c].scale_factors[b] = - s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++]; - } - - if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) { - - if (!s->channel[c].reuse_sf) { - int val; - /** decode DPCM coded scale factors */ - s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1; - val = 45 / s->channel[c].scale_factor_step; - for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) { - val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60; - *sf = val; - } - } else { - int i; - /** run level decode differences to the resampled factors */ - for (i = 0; i < s->num_bands; i++) { - int idx; - int skip; - int val; - int sign; - - idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH); - - if (!idx) { - uint32_t code = get_bits(&s->gb, 14); - val = code >> 6; - sign = (code & 1) - 1; - skip = (code & 0x3f) >> 1; - } else if (idx == 1) { - break; - } else { - skip = scale_rl_run[idx]; - val = scale_rl_level[idx]; - sign = get_bits1(&s->gb)-1; - } - - i += skip; - if (i >= s->num_bands) { - av_log(s->avctx, AV_LOG_ERROR, - "invalid scale factor coding\n"); - return AVERROR_INVALIDDATA; - } - s->channel[c].scale_factors[i] += (val ^ sign) - sign; - } - } - /** swap buffers */ - s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx; - s->channel[c].table_idx = s->table_idx; - s->channel[c].reuse_sf = 1; - } - - /** calculate new scale factor maximum */ - s->channel[c].max_scale_factor = s->channel[c].scale_factors[0]; - for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) { - s->channel[c].max_scale_factor = - FFMAX(s->channel[c].max_scale_factor, *sf); - } - - } - return 0; -} - -/** - *@brief Reconstruct the individual channel data. - *@param s codec context - */ -static void inverse_channel_transform(WMAProDecodeCtx *s) -{ - int i; - - for (i = 0; i < s->num_chgroups; i++) { - if (s->chgroup[i].transform) { - float data[WMAPRO_MAX_CHANNELS]; - const int num_channels = s->chgroup[i].num_channels; - float** ch_data = s->chgroup[i].channel_data; - float** ch_end = ch_data + num_channels; - const int8_t* tb = s->chgroup[i].transform_band; - int16_t* sfb; - - /** multichannel decorrelation */ - for (sfb = s->cur_sfb_offsets; - sfb < s->cur_sfb_offsets + s->num_bands; sfb++) { - int y; - if (*tb++ == 1) { - /** multiply values with the decorrelation_matrix */ - for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) { - const float* mat = s->chgroup[i].decorrelation_matrix; - const float* data_end = data + num_channels; - float* data_ptr = data; - float** ch; - - for (ch = ch_data; ch < ch_end; ch++) - *data_ptr++ = (*ch)[y]; - - for (ch = ch_data; ch < ch_end; ch++) { - float sum = 0; - data_ptr = data; - while (data_ptr < data_end) - sum += *data_ptr++ * *mat++; - - (*ch)[y] = sum; - } - } - } else if (s->num_channels == 2) { - int len = FFMIN(sfb[1], s->subframe_len) - sfb[0]; - s->dsp.vector_fmul_scalar(ch_data[0] + sfb[0], - ch_data[0] + sfb[0], - 181.0 / 128, len); - s->dsp.vector_fmul_scalar(ch_data[1] + sfb[0], - ch_data[1] + sfb[0], - 181.0 / 128, len); - } - } - } - } -} - -/** - *@brief Apply sine window and reconstruct the output buffer. - *@param s codec context - */ -static void wmapro_window(WMAProDecodeCtx *s) -{ - int i; - for (i = 0; i < s->channels_for_cur_subframe; i++) { - int c = s->channel_indexes_for_cur_subframe[i]; - float* window; - int winlen = s->channel[c].prev_block_len; - float* start = s->channel[c].coeffs - (winlen >> 1); - - if (s->subframe_len < winlen) { - start += (winlen - s->subframe_len) >> 1; - winlen = s->subframe_len; - } - - window = s->windows[av_log2(winlen) - BLOCK_MIN_BITS]; - - winlen >>= 1; - - s->dsp.vector_fmul_window(start, start, start + winlen, - window, 0, winlen); - - s->channel[c].prev_block_len = s->subframe_len; - } -} - -/** - *@brief Decode a single subframe (block). - *@param s codec context - *@return 0 on success, < 0 when decoding failed - */ -static int decode_subframe(WMAProDecodeCtx *s) -{ - int offset = s->samples_per_frame; - int subframe_len = s->samples_per_frame; - int i; - int total_samples = s->samples_per_frame * s->num_channels; - int transmit_coeffs = 0; - int cur_subwoofer_cutoff; - - s->subframe_offset = get_bits_count(&s->gb); - - /** reset channel context and find the next block offset and size - == the next block of the channel with the smallest number of - decoded samples - */ - for (i = 0; i < s->num_channels; i++) { - s->channel[i].grouped = 0; - if (offset > s->channel[i].decoded_samples) { - offset = s->channel[i].decoded_samples; - subframe_len = - s->channel[i].subframe_len[s->channel[i].cur_subframe]; - } - } - - dprintf(s->avctx, - "processing subframe with offset %i len %i\n", offset, subframe_len); - - /** get a list of all channels that contain the estimated block */ - s->channels_for_cur_subframe = 0; - for (i = 0; i < s->num_channels; i++) { - const int cur_subframe = s->channel[i].cur_subframe; - /** substract already processed samples */ - total_samples -= s->channel[i].decoded_samples; - - /** and count if there are multiple subframes that match our profile */ - if (offset == s->channel[i].decoded_samples && - subframe_len == s->channel[i].subframe_len[cur_subframe]) { - total_samples -= s->channel[i].subframe_len[cur_subframe]; - s->channel[i].decoded_samples += - s->channel[i].subframe_len[cur_subframe]; - s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i; - ++s->channels_for_cur_subframe; - } - } - - /** check if the frame will be complete after processing the - estimated block */ - if (!total_samples) - s->parsed_all_subframes = 1; - - - dprintf(s->avctx, "subframe is part of %i channels\n", - s->channels_for_cur_subframe); - - /** calculate number of scale factor bands and their offsets */ - s->table_idx = av_log2(s->samples_per_frame/subframe_len); - s->num_bands = s->num_sfb[s->table_idx]; - s->cur_sfb_offsets = s->sfb_offsets[s->table_idx]; - cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx]; - - /** configure the decoder for the current subframe */ - for (i = 0; i < s->channels_for_cur_subframe; i++) { - int c = s->channel_indexes_for_cur_subframe[i]; - - s->channel[c].coeffs = &s->channel[c].out[(s->samples_per_frame >> 1) - + offset]; - } - - s->subframe_len = subframe_len; - s->esc_len = av_log2(s->subframe_len - 1) + 1; - - /** skip extended header if any */ - if (get_bits1(&s->gb)) { - int num_fill_bits; - if (!(num_fill_bits = get_bits(&s->gb, 2))) { - int len = get_bits(&s->gb, 4); - num_fill_bits = get_bits(&s->gb, len) + 1; - } - - if (num_fill_bits >= 0) { - if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) { - av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n"); - return AVERROR_INVALIDDATA; - } - - skip_bits_long(&s->gb, num_fill_bits); - } - } - - /** no idea for what the following bit is used */ - if (get_bits1(&s->gb)) { - av_log_ask_for_sample(s->avctx, "reserved bit set\n"); - return AVERROR_INVALIDDATA; - } - - - if (decode_channel_transform(s) < 0) - return AVERROR_INVALIDDATA; - - - for (i = 0; i < s->channels_for_cur_subframe; i++) { - int c = s->channel_indexes_for_cur_subframe[i]; - if ((s->channel[c].transmit_coefs = get_bits1(&s->gb))) - transmit_coeffs = 1; - } - - if (transmit_coeffs) { - int step; - int quant_step = 90 * s->bits_per_sample >> 4; - if ((get_bits1(&s->gb))) { - /** FIXME: might change run level mode decision */ - av_log_ask_for_sample(s->avctx, "unsupported quant step coding\n"); - return AVERROR_INVALIDDATA; - } - /** decode quantization step */ - step = get_sbits(&s->gb, 6); - quant_step += step; - if (step == -32 || step == 31) { - const int sign = (step == 31) - 1; - int quant = 0; - while (get_bits_count(&s->gb) + 5 < s->num_saved_bits && - (step = get_bits(&s->gb, 5)) == 31) { - quant += 31; - } - quant_step += ((quant + step) ^ sign) - sign; - } - if (quant_step < 0) { - av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n"); - } - - /** decode quantization step modifiers for every channel */ - - if (s->channels_for_cur_subframe == 1) { - s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step; - } else { - int modifier_len = get_bits(&s->gb, 3); - for (i = 0; i < s->channels_for_cur_subframe; i++) { - int c = s->channel_indexes_for_cur_subframe[i]; - s->channel[c].quant_step = quant_step; - if (get_bits1(&s->gb)) { - if (modifier_len) { - s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1; - } else - ++s->channel[c].quant_step; - } - } - } - - /** decode scale factors */ - if (decode_scale_factors(s) < 0) - return AVERROR_INVALIDDATA; - } - - dprintf(s->avctx, "BITSTREAM: subframe header length was %i\n", - get_bits_count(&s->gb) - s->subframe_offset); - - /** parse coefficients */ - for (i = 0; i < s->channels_for_cur_subframe; i++) { - int c = s->channel_indexes_for_cur_subframe[i]; - if (s->channel[c].transmit_coefs && - get_bits_count(&s->gb) < s->num_saved_bits) { - decode_coeffs(s, c); - } else - memset(s->channel[c].coeffs, 0, - sizeof(*s->channel[c].coeffs) * subframe_len); - } - - dprintf(s->avctx, "BITSTREAM: subframe length was %i\n", - get_bits_count(&s->gb) - s->subframe_offset); - - if (transmit_coeffs) { - /** reconstruct the per channel data */ - inverse_channel_transform(s); - for (i = 0; i < s->channels_for_cur_subframe; i++) { - int c = s->channel_indexes_for_cur_subframe[i]; - const int* sf = s->channel[c].scale_factors; - int b; - - if (c == s->lfe_channel) - memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) * - (subframe_len - cur_subwoofer_cutoff)); - - /** inverse quantization and rescaling */ - for (b = 0; b < s->num_bands; b++) { - const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len); - const int exp = s->channel[c].quant_step - - (s->channel[c].max_scale_factor - *sf++) * - s->channel[c].scale_factor_step; - const float quant = pow(10.0, exp / 20.0); - int start = s->cur_sfb_offsets[b]; - s->dsp.vector_fmul_scalar(s->tmp + start, - s->channel[c].coeffs + start, - quant, end - start); - } - - /** apply imdct (ff_imdct_half == DCTIV with reverse) */ - ff_imdct_half(&s->mdct_ctx[av_log2(subframe_len) - BLOCK_MIN_BITS], - s->channel[c].coeffs, s->tmp); - } - } - - /** window and overlapp-add */ - wmapro_window(s); - - /** handled one subframe */ - for (i = 0; i < s->channels_for_cur_subframe; i++) { - int c = s->channel_indexes_for_cur_subframe[i]; - if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) { - av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n"); - return AVERROR_INVALIDDATA; - } - ++s->channel[c].cur_subframe; - } - - return 0; -} - -/** - *@brief Decode one WMA frame. - *@param s codec context - *@return 0 if the trailer bit indicates that this is the last frame, - * 1 if there are additional frames - */ -static int decode_frame(WMAProDecodeCtx *s) -{ - GetBitContext* gb = &s->gb; - int more_frames = 0; - int len = 0; - int i; - - /** check for potential output buffer overflow */ - if (s->num_channels * s->samples_per_frame > s->samples_end - s->samples) { - /** return an error if no frame could be decoded at all */ - av_log(s->avctx, AV_LOG_ERROR, - "not enough space for the output samples\n"); - s->packet_loss = 1; - return 0; - } - - /** get frame length */ - if (s->len_prefix) - len = get_bits(gb, s->log2_frame_size); - - dprintf(s->avctx, "decoding frame with length %x\n", len); - - /** decode tile information */ - if (decode_tilehdr(s)) { - s->packet_loss = 1; - return 0; - } - - /** read postproc transform */ - if (s->num_channels > 1 && get_bits1(gb)) { - av_log_ask_for_sample(s->avctx, "Unsupported postproc transform found\n"); - s->packet_loss = 1; - return 0; - } - - /** read drc info */ - if (s->dynamic_range_compression) { - s->drc_gain = get_bits(gb, 8); - dprintf(s->avctx, "drc_gain %i\n", s->drc_gain); - } - - /** no idea what these are for, might be the number of samples - that need to be skipped at the beginning or end of a stream */ - if (get_bits1(gb)) { - int skip; - - /** usually true for the first frame */ - if (get_bits1(gb)) { - skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); - dprintf(s->avctx, "start skip: %i\n", skip); - } - - /** sometimes true for the last frame */ - if (get_bits1(gb)) { - skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); - dprintf(s->avctx, "end skip: %i\n", skip); - } - - } - - dprintf(s->avctx, "BITSTREAM: frame header length was %i\n", - get_bits_count(gb) - s->frame_offset); - - /** reset subframe states */ - s->parsed_all_subframes = 0; - for (i = 0; i < s->num_channels; i++) { - s->channel[i].decoded_samples = 0; - s->channel[i].cur_subframe = 0; - s->channel[i].reuse_sf = 0; - } - - /** decode all subframes */ - while (!s->parsed_all_subframes) { - if (decode_subframe(s) < 0) { - s->packet_loss = 1; - return 0; - } - } - - /** interleave samples and write them to the output buffer */ - for (i = 0; i < s->num_channels; i++) { - float* ptr = s->samples + i; - int incr = s->num_channels; - float* iptr = s->channel[i].out; - float* iend = iptr + s->samples_per_frame; - - while (iptr < iend) { - *ptr = av_clipf(*iptr++, -1.0, 32767.0 / 32768.0); - ptr += incr; - } - - /** reuse second half of the IMDCT output for the next frame */ - memcpy(&s->channel[i].out[0], - &s->channel[i].out[s->samples_per_frame], - s->samples_per_frame * sizeof(*s->channel[i].out) >> 1); - } - - if (s->skip_frame) { - s->skip_frame = 0; - } else - s->samples += s->num_channels * s->samples_per_frame; - - if (len != (get_bits_count(gb) - s->frame_offset) + 2) { - /** FIXME: not sure if this is always an error */ - av_log(s->avctx, AV_LOG_ERROR, "frame[%i] would have to skip %i bits\n", - s->frame_num, len - (get_bits_count(gb) - s->frame_offset) - 1); - s->packet_loss = 1; - return 0; - } - - /** skip the rest of the frame data */ - skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1); - - /** decode trailer bit */ - more_frames = get_bits1(gb); - - ++s->frame_num; - return more_frames; -} - -/** - *@brief Calculate remaining input buffer length. - *@param s codec context - *@param gb bitstream reader context - *@return remaining size in bits - */ -static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb) -{ - return s->buf_bit_size - get_bits_count(gb); -} - -/** - *@brief Fill the bit reservoir with a (partial) frame. - *@param s codec context - *@param gb bitstream reader context - *@param len length of the partial frame - *@param append decides wether to reset the buffer or not - */ -static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len, - int append) -{ - int buflen; - - /** when the frame data does not need to be concatenated, the input buffer - is resetted and additional bits from the previous frame are copyed - and skipped later so that a fast byte copy is possible */ - - if (!append) { - s->frame_offset = get_bits_count(gb) & 7; - s->num_saved_bits = s->frame_offset; - init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); - } - - buflen = (s->num_saved_bits + len + 8) >> 3; - - if (len <= 0 || buflen > MAX_FRAMESIZE) { - av_log_ask_for_sample(s->avctx, "input buffer too small\n"); - s->packet_loss = 1; - return; - } - - s->num_saved_bits += len; - if (!append) { - ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), - s->num_saved_bits); - } else { - int align = 8 - (get_bits_count(gb) & 7); - align = FFMIN(align, len); - put_bits(&s->pb, align, get_bits(gb, align)); - len -= align; - ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len); - } - skip_bits_long(gb, len); - - { - PutBitContext tmp = s->pb; - flush_put_bits(&tmp); - } - - init_get_bits(&s->gb, s->frame_data, s->num_saved_bits); - skip_bits(&s->gb, s->frame_offset); -} - -/** - *@brief Decode a single WMA packet. - *@param avctx codec context - *@param data the output buffer - *@param data_size number of bytes that were written to the output buffer - *@param avpkt input packet - *@return number of bytes that were read from the input buffer - */ -static int decode_packet(AVCodecContext *avctx, - void *data, int *data_size, AVPacket* avpkt) -{ - WMAProDecodeCtx *s = avctx->priv_data; - GetBitContext* gb = &s->pgb; - const uint8_t* buf = avpkt->data; - int buf_size = avpkt->size; - int num_bits_prev_frame; - int packet_sequence_number; - - s->samples = data; - s->samples_end = (float*)((int8_t*)data + *data_size); - *data_size = 0; - - if (s->packet_done || s->packet_loss) { - s->packet_done = 0; - s->buf_bit_size = buf_size << 3; - - /** sanity check for the buffer length */ - if (buf_size < avctx->block_align) - return 0; - - buf_size = avctx->block_align; - - /** parse packet header */ - init_get_bits(gb, buf, s->buf_bit_size); - packet_sequence_number = get_bits(gb, 4); - skip_bits(gb, 2); - - /** get number of bits that need to be added to the previous frame */ - num_bits_prev_frame = get_bits(gb, s->log2_frame_size); - dprintf(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number, - num_bits_prev_frame); - - /** check for packet loss */ - if (!s->packet_loss && - ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) { - s->packet_loss = 1; - av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n", - s->packet_sequence_number, packet_sequence_number); - } - s->packet_sequence_number = packet_sequence_number; - - if (num_bits_prev_frame > 0) { - /** append the previous frame data to the remaining data from the - previous packet to create a full frame */ - save_bits(s, gb, num_bits_prev_frame, 1); - dprintf(avctx, "accumulated %x bits of frame data\n", - s->num_saved_bits - s->frame_offset); - - /** decode the cross packet frame if it is valid */ - if (!s->packet_loss) - decode_frame(s); - } else if (s->num_saved_bits - s->frame_offset) { - dprintf(avctx, "ignoring %x previously saved bits\n", - s->num_saved_bits - s->frame_offset); - } - - s->packet_loss = 0; - - } else { - int frame_size; - s->buf_bit_size = avpkt->size << 3; - init_get_bits(gb, avpkt->data, s->buf_bit_size); - skip_bits(gb, s->packet_offset); - if (remaining_bits(s, gb) > s->log2_frame_size && - (frame_size = show_bits(gb, s->log2_frame_size)) && - frame_size <= remaining_bits(s, gb)) { - save_bits(s, gb, frame_size, 0); - s->packet_done = !decode_frame(s); - } else - s->packet_done = 1; - } - - if (s->packet_done && !s->packet_loss && - remaining_bits(s, gb) > 0) { - /** save the rest of the data so that it can be decoded - with the next packet */ - save_bits(s, gb, remaining_bits(s, gb), 0); - } - - *data_size = (int8_t *)s->samples - (int8_t *)data; - s->packet_offset = get_bits_count(gb) & 7; - - return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3; -} - -/** - *@brief Clear decoder buffers (for seeking). - *@param avctx codec context - */ -static void flush(AVCodecContext *avctx) -{ - WMAProDecodeCtx *s = avctx->priv_data; - int i; - /** reset output buffer as a part of it is used during the windowing of a - new frame */ - for (i = 0; i < s->num_channels; i++) - memset(s->channel[i].out, 0, s->samples_per_frame * - sizeof(*s->channel[i].out)); - s->packet_loss = 1; -} - -#if 0 -/** - *@brief wmapro decoder - */ -AVCodec wmapro_decoder = { - "wmapro", - AVMEDIA_TYPE_AUDIO, - CODEC_ID_WMAPRO, - sizeof(WMAProDecodeCtx), - decode_init, - NULL, - decode_end, - decode_packet, - .capabilities = CODEC_CAP_SUBFRAMES, - .flush= flush, - .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"), -}; -#endif - -int main(void) -{ - /* possible test program - just here now to silence the linker */ - return 0; -} -- cgit v1.2.3