diff options
Diffstat (limited to 'apps/plugins/lib/fixedpoint.c')
-rw-r--r-- | apps/plugins/lib/fixedpoint.c | 239 |
1 files changed, 1 insertions, 238 deletions
diff --git a/apps/plugins/lib/fixedpoint.c b/apps/plugins/lib/fixedpoint.c index 0ae2cded69..352e246673 100644 --- a/apps/plugins/lib/fixedpoint.c +++ b/apps/plugins/lib/fixedpoint.c | |||
@@ -1,238 +1 @@ | |||
1 | /*************************************************************************** | #include "../../fixedpoint.c" | |
2 | * __________ __ ___. | ||
3 | * Open \______ \ ____ ____ | | _\_ |__ _______ ___ | ||
4 | * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / | ||
5 | * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < | ||
6 | * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ | ||
7 | * \/ \/ \/ \/ \/ | ||
8 | * $Id$ | ||
9 | * | ||
10 | * Copyright (C) 2006 Jens Arnold | ||
11 | * | ||
12 | * Fixed point library for plugins | ||
13 | * | ||
14 | * This program is free software; you can redistribute it and/or | ||
15 | * modify it under the terms of the GNU General Public License | ||
16 | * as published by the Free Software Foundation; either version 2 | ||
17 | * of the License, or (at your option) any later version. | ||
18 | * | ||
19 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY | ||
20 | * KIND, either express or implied. | ||
21 | * | ||
22 | ****************************************************************************/ | ||
23 | |||
24 | #include <inttypes.h> | ||
25 | #include "plugin.h" | ||
26 | #include "fixedpoint.h" | ||
27 | |||
28 | /* Inverse gain of circular cordic rotation in s0.31 format. */ | ||
29 | static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */ | ||
30 | |||
31 | /* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */ | ||
32 | static const unsigned long atan_table[] = { | ||
33 | 0x1fffffff, /* +0.785398163 (or pi/4) */ | ||
34 | 0x12e4051d, /* +0.463647609 */ | ||
35 | 0x09fb385b, /* +0.244978663 */ | ||
36 | 0x051111d4, /* +0.124354995 */ | ||
37 | 0x028b0d43, /* +0.062418810 */ | ||
38 | 0x0145d7e1, /* +0.031239833 */ | ||
39 | 0x00a2f61e, /* +0.015623729 */ | ||
40 | 0x00517c55, /* +0.007812341 */ | ||
41 | 0x0028be53, /* +0.003906230 */ | ||
42 | 0x00145f2e, /* +0.001953123 */ | ||
43 | 0x000a2f98, /* +0.000976562 */ | ||
44 | 0x000517cc, /* +0.000488281 */ | ||
45 | 0x00028be6, /* +0.000244141 */ | ||
46 | 0x000145f3, /* +0.000122070 */ | ||
47 | 0x0000a2f9, /* +0.000061035 */ | ||
48 | 0x0000517c, /* +0.000030518 */ | ||
49 | 0x000028be, /* +0.000015259 */ | ||
50 | 0x0000145f, /* +0.000007629 */ | ||
51 | 0x00000a2f, /* +0.000003815 */ | ||
52 | 0x00000517, /* +0.000001907 */ | ||
53 | 0x0000028b, /* +0.000000954 */ | ||
54 | 0x00000145, /* +0.000000477 */ | ||
55 | 0x000000a2, /* +0.000000238 */ | ||
56 | 0x00000051, /* +0.000000119 */ | ||
57 | 0x00000028, /* +0.000000060 */ | ||
58 | 0x00000014, /* +0.000000030 */ | ||
59 | 0x0000000a, /* +0.000000015 */ | ||
60 | 0x00000005, /* +0.000000007 */ | ||
61 | 0x00000002, /* +0.000000004 */ | ||
62 | 0x00000001, /* +0.000000002 */ | ||
63 | 0x00000000, /* +0.000000001 */ | ||
64 | 0x00000000, /* +0.000000000 */ | ||
65 | }; | ||
66 | |||
67 | /* Precalculated sine and cosine * 16384 (2^14) (fixed point 18.14) */ | ||
68 | static const short sin_table[91] = | ||
69 | { | ||
70 | 0, 285, 571, 857, 1142, 1427, 1712, 1996, 2280, 2563, | ||
71 | 2845, 3126, 3406, 3685, 3963, 4240, 4516, 4790, 5062, 5334, | ||
72 | 5603, 5871, 6137, 6401, 6663, 6924, 7182, 7438, 7691, 7943, | ||
73 | 8191, 8438, 8682, 8923, 9161, 9397, 9630, 9860, 10086, 10310, | ||
74 | 10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365, | ||
75 | 12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043, | ||
76 | 14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295, | ||
77 | 15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082, | ||
78 | 16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381, | ||
79 | 16384 | ||
80 | }; | ||
81 | |||
82 | /** | ||
83 | * Implements sin and cos using CORDIC rotation. | ||
84 | * | ||
85 | * @param phase has range from 0 to 0xffffffff, representing 0 and | ||
86 | * 2*pi respectively. | ||
87 | * @param cos return address for cos | ||
88 | * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX, | ||
89 | * representing -1 and 1 respectively. | ||
90 | */ | ||
91 | long fsincos(unsigned long phase, long *cos) | ||
92 | { | ||
93 | int32_t x, x1, y, y1; | ||
94 | unsigned long z, z1; | ||
95 | int i; | ||
96 | |||
97 | /* Setup initial vector */ | ||
98 | x = cordic_circular_gain; | ||
99 | y = 0; | ||
100 | z = phase; | ||
101 | |||
102 | /* The phase has to be somewhere between 0..pi for this to work right */ | ||
103 | if (z < 0xffffffff / 4) { | ||
104 | /* z in first quadrant, z += pi/2 to correct */ | ||
105 | x = -x; | ||
106 | z += 0xffffffff / 4; | ||
107 | } else if (z < 3 * (0xffffffff / 4)) { | ||
108 | /* z in third quadrant, z -= pi/2 to correct */ | ||
109 | z -= 0xffffffff / 4; | ||
110 | } else { | ||
111 | /* z in fourth quadrant, z -= 3pi/2 to correct */ | ||
112 | x = -x; | ||
113 | z -= 3 * (0xffffffff / 4); | ||
114 | } | ||
115 | |||
116 | /* Each iteration adds roughly 1-bit of extra precision */ | ||
117 | for (i = 0; i < 31; i++) { | ||
118 | x1 = x >> i; | ||
119 | y1 = y >> i; | ||
120 | z1 = atan_table[i]; | ||
121 | |||
122 | /* Decided which direction to rotate vector. Pivot point is pi/2 */ | ||
123 | if (z >= 0xffffffff / 4) { | ||
124 | x -= y1; | ||
125 | y += x1; | ||
126 | z -= z1; | ||
127 | } else { | ||
128 | x += y1; | ||
129 | y -= x1; | ||
130 | z += z1; | ||
131 | } | ||
132 | } | ||
133 | |||
134 | if (cos) | ||
135 | *cos = x; | ||
136 | |||
137 | return y; | ||
138 | } | ||
139 | |||
140 | /** | ||
141 | * Fixed point square root via Newton-Raphson. | ||
142 | * @param a square root argument. | ||
143 | * @param fracbits specifies number of fractional bits in argument. | ||
144 | * @return Square root of argument in same fixed point format as input. | ||
145 | */ | ||
146 | long fsqrt(long a, unsigned int fracbits) | ||
147 | { | ||
148 | long b = a/2 + BIT_N(fracbits); /* initial approximation */ | ||
149 | unsigned n; | ||
150 | const unsigned iterations = 4; | ||
151 | |||
152 | for (n = 0; n < iterations; ++n) | ||
153 | b = (b + (long)(((long long)(a) << fracbits)/b))/2; | ||
154 | |||
155 | return b; | ||
156 | } | ||
157 | |||
158 | /** | ||
159 | * Fixed point sinus using a lookup table | ||
160 | * don't forget to divide the result by 16384 to get the actual sinus value | ||
161 | * @param val sinus argument in degree | ||
162 | * @return sin(val)*16384 | ||
163 | */ | ||
164 | long sin_int(int val) | ||
165 | { | ||
166 | val = (val+360)%360; | ||
167 | if (val < 181) | ||
168 | { | ||
169 | if (val < 91)/* phase 0-90 degree */ | ||
170 | return (long)sin_table[val]; | ||
171 | else/* phase 91-180 degree */ | ||
172 | return (long)sin_table[180-val]; | ||
173 | } | ||
174 | else | ||
175 | { | ||
176 | if (val < 271)/* phase 181-270 degree */ | ||
177 | return -(long)sin_table[val-180]; | ||
178 | else/* phase 270-359 degree */ | ||
179 | return -(long)sin_table[360-val]; | ||
180 | } | ||
181 | return 0; | ||
182 | } | ||
183 | |||
184 | /** | ||
185 | * Fixed point cosinus using a lookup table | ||
186 | * don't forget to divide the result by 16384 to get the actual cosinus value | ||
187 | * @param val sinus argument in degree | ||
188 | * @return cos(val)*16384 | ||
189 | */ | ||
190 | long cos_int(int val) | ||
191 | { | ||
192 | val = (val+360)%360; | ||
193 | if (val < 181) | ||
194 | { | ||
195 | if (val < 91)/* phase 0-90 degree */ | ||
196 | return (long)sin_table[90-val]; | ||
197 | else/* phase 91-180 degree */ | ||
198 | return -(long)sin_table[val-90]; | ||
199 | } | ||
200 | else | ||
201 | { | ||
202 | if (val < 271)/* phase 181-270 degree */ | ||
203 | return -(long)sin_table[270-val]; | ||
204 | else/* phase 270-359 degree */ | ||
205 | return (long)sin_table[val-270]; | ||
206 | } | ||
207 | return 0; | ||
208 | } | ||
209 | |||
210 | /** | ||
211 | * Fixed-point natural log | ||
212 | * taken from http://www.quinapalus.com/efunc.html | ||
213 | * "The code assumes integers are at least 32 bits long. The (positive) | ||
214 | * argument and the result of the function are both expressed as fixed-point | ||
215 | * values with 16 fractional bits, although intermediates are kept with 28 | ||
216 | * bits of precision to avoid loss of accuracy during shifts." | ||
217 | */ | ||
218 | |||
219 | long flog(int x) { | ||
220 | long t,y; | ||
221 | |||
222 | y=0xa65af; | ||
223 | if(x<0x00008000) x<<=16, y-=0xb1721; | ||
224 | if(x<0x00800000) x<<= 8, y-=0x58b91; | ||
225 | if(x<0x08000000) x<<= 4, y-=0x2c5c8; | ||
226 | if(x<0x20000000) x<<= 2, y-=0x162e4; | ||
227 | if(x<0x40000000) x<<= 1, y-=0x0b172; | ||
228 | t=x+(x>>1); if((t&0x80000000)==0) x=t,y-=0x067cd; | ||
229 | t=x+(x>>2); if((t&0x80000000)==0) x=t,y-=0x03920; | ||
230 | t=x+(x>>3); if((t&0x80000000)==0) x=t,y-=0x01e27; | ||
231 | t=x+(x>>4); if((t&0x80000000)==0) x=t,y-=0x00f85; | ||
232 | t=x+(x>>5); if((t&0x80000000)==0) x=t,y-=0x007e1; | ||
233 | t=x+(x>>6); if((t&0x80000000)==0) x=t,y-=0x003f8; | ||
234 | t=x+(x>>7); if((t&0x80000000)==0) x=t,y-=0x001fe; | ||
235 | x=0x80000000-x; | ||
236 | y-=x>>15; | ||
237 | return y; | ||
238 | } | ||