summaryrefslogtreecommitdiff
path: root/apps/plugins/puzzles/src/cube.c
diff options
context:
space:
mode:
authorFranklin Wei <git@fwei.tk>2017-04-29 18:21:56 -0400
committerFranklin Wei <git@fwei.tk>2017-04-29 18:24:42 -0400
commit881746789a489fad85aae8317555f73dbe261556 (patch)
treecec2946362c4698c8db3c10f3242ef546c2c22dd /apps/plugins/puzzles/src/cube.c
parent03dd4b92be7dcd5c8ab06da3810887060e06abd5 (diff)
downloadrockbox-881746789a489fad85aae8317555f73dbe261556.tar.gz
rockbox-881746789a489fad85aae8317555f73dbe261556.zip
puzzles: refactor and resync with upstream
This brings puzzles up-to-date with upstream revision 2d333750272c3967cfd5cd3677572cddeaad5932, though certain changes made by me, including cursor-only Untangle and some compilation fixes remain. Upstream code has been moved to its separate subdirectory and future syncs can be done by simply copying over the new sources. Change-Id: Ia6506ca5f78c3627165ea6791d38db414ace0804
Diffstat (limited to 'apps/plugins/puzzles/src/cube.c')
-rw-r--r--apps/plugins/puzzles/src/cube.c1773
1 files changed, 1773 insertions, 0 deletions
diff --git a/apps/plugins/puzzles/src/cube.c b/apps/plugins/puzzles/src/cube.c
new file mode 100644
index 0000000000..a30dc10b3f
--- /dev/null
+++ b/apps/plugins/puzzles/src/cube.c
@@ -0,0 +1,1773 @@
1/*
2 * cube.c: Cube game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
9#include <ctype.h>
10#include <math.h>
11
12#include "puzzles.h"
13
14#define MAXVERTICES 20
15#define MAXFACES 20
16#define MAXORDER 4
17struct solid {
18 int nvertices;
19 float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */
20 int order;
21 int nfaces;
22 int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */
23 float normals[MAXFACES * 3]; /* 3*npoints vector components */
24 float shear; /* isometric shear for nice drawing */
25 float border; /* border required around arena */
26};
27
28static const struct solid s_tetrahedron = {
29 4,
30 {
31 0.0F, -0.57735026919F, -0.20412414523F,
32 -0.5F, 0.28867513459F, -0.20412414523F,
33 0.0F, -0.0F, 0.6123724357F,
34 0.5F, 0.28867513459F, -0.20412414523F,
35 },
36 3, 4,
37 {
38 0,2,1, 3,1,2, 2,0,3, 1,3,0
39 },
40 {
41 -0.816496580928F, -0.471404520791F, 0.333333333334F,
42 0.0F, 0.942809041583F, 0.333333333333F,
43 0.816496580928F, -0.471404520791F, 0.333333333334F,
44 0.0F, 0.0F, -1.0F,
45 },
46 0.0F, 0.3F
47};
48
49static const struct solid s_cube = {
50 8,
51 {
52 -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
53 -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
54 +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
55 +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
56 },
57 4, 6,
58 {
59 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
60 },
61 {
62 -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
63 +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
64 0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
65 },
66 0.3F, 0.5F
67};
68
69static const struct solid s_octahedron = {
70 6,
71 {
72 -0.5F, -0.28867513459472505F, 0.4082482904638664F,
73 0.5F, 0.28867513459472505F, -0.4082482904638664F,
74 -0.5F, 0.28867513459472505F, -0.4082482904638664F,
75 0.5F, -0.28867513459472505F, 0.4082482904638664F,
76 0.0F, -0.57735026918945009F, -0.4082482904638664F,
77 0.0F, 0.57735026918945009F, 0.4082482904638664F,
78 },
79 3, 8,
80 {
81 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
82 },
83 {
84 -0.816496580928F, -0.471404520791F, -0.333333333334F,
85 -0.816496580928F, 0.471404520791F, 0.333333333334F,
86 0.0F, -0.942809041583F, 0.333333333333F,
87 0.0F, 0.0F, 1.0F,
88 0.0F, 0.0F, -1.0F,
89 0.0F, 0.942809041583F, -0.333333333333F,
90 0.816496580928F, -0.471404520791F, -0.333333333334F,
91 0.816496580928F, 0.471404520791F, 0.333333333334F,
92 },
93 0.0F, 0.5F
94};
95
96static const struct solid s_icosahedron = {
97 12,
98 {
99 0.0F, 0.57735026919F, 0.75576131408F,
100 0.0F, -0.93417235896F, 0.17841104489F,
101 0.0F, 0.93417235896F, -0.17841104489F,
102 0.0F, -0.57735026919F, -0.75576131408F,
103 -0.5F, -0.28867513459F, 0.75576131408F,
104 -0.5F, 0.28867513459F, -0.75576131408F,
105 0.5F, -0.28867513459F, 0.75576131408F,
106 0.5F, 0.28867513459F, -0.75576131408F,
107 -0.80901699437F, 0.46708617948F, 0.17841104489F,
108 0.80901699437F, 0.46708617948F, 0.17841104489F,
109 -0.80901699437F, -0.46708617948F, -0.17841104489F,
110 0.80901699437F, -0.46708617948F, -0.17841104489F,
111 },
112 3, 20,
113 {
114 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
115 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
116 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
117 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
118 },
119 {
120 -0.356822089773F, 0.87267799625F, 0.333333333333F,
121 0.356822089773F, 0.87267799625F, 0.333333333333F,
122 -0.356822089773F, -0.87267799625F, -0.333333333333F,
123 0.356822089773F, -0.87267799625F, -0.333333333333F,
124 -0.0F, 0.0F, 1.0F,
125 0.0F, -0.666666666667F, 0.745355992501F,
126 0.0F, 0.666666666667F, -0.745355992501F,
127 0.0F, 0.0F, -1.0F,
128 -0.934172358963F, -0.12732200375F, 0.333333333333F,
129 -0.934172358963F, 0.12732200375F, -0.333333333333F,
130 0.934172358963F, -0.12732200375F, 0.333333333333F,
131 0.934172358963F, 0.12732200375F, -0.333333333333F,
132 -0.57735026919F, 0.333333333334F, 0.745355992501F,
133 0.57735026919F, 0.333333333334F, 0.745355992501F,
134 -0.57735026919F, -0.745355992501F, 0.333333333334F,
135 0.57735026919F, -0.745355992501F, 0.333333333334F,
136 -0.57735026919F, 0.745355992501F, -0.333333333334F,
137 0.57735026919F, 0.745355992501F, -0.333333333334F,
138 -0.57735026919F, -0.333333333334F, -0.745355992501F,
139 0.57735026919F, -0.333333333334F, -0.745355992501F,
140 },
141 0.0F, 0.8F
142};
143
144enum {
145 TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
146};
147static const struct solid *solids[] = {
148 &s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron
149};
150
151enum {
152 COL_BACKGROUND,
153 COL_BORDER,
154 COL_BLUE,
155 NCOLOURS
156};
157
158enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
159
160#define PREFERRED_GRID_SCALE 48
161#define GRID_SCALE (ds->gridscale)
162#define ROLLTIME 0.13F
163
164#define SQ(x) ( (x) * (x) )
165
166#define MATMUL(ra,m,a) do { \
167 float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
168 rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
169 ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
170 rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
171 (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
172} while (0)
173
174#define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
175
176struct grid_square {
177 float x, y;
178 int npoints;
179 float points[8]; /* maximum */
180 int directions[8]; /* bit masks showing point pairs */
181 int flip;
182 int tetra_class;
183};
184
185struct game_params {
186 int solid;
187 /*
188 * Grid dimensions. For a square grid these are width and
189 * height respectively; otherwise the grid is a hexagon, with
190 * the top side and the two lower diagonals having length d1
191 * and the remaining three sides having length d2 (so that
192 * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
193 */
194 int d1, d2;
195};
196
197typedef struct game_grid game_grid;
198struct game_grid {
199 int refcount;
200 struct grid_square *squares;
201 int nsquares;
202};
203
204#define SET_SQUARE(state, i, val) \
205 ((state)->bluemask[(i)/32] &= ~(1 << ((i)%32)), \
206 (state)->bluemask[(i)/32] |= ((!!val) << ((i)%32)))
207#define GET_SQUARE(state, i) \
208 (((state)->bluemask[(i)/32] >> ((i)%32)) & 1)
209
210struct game_state {
211 struct game_params params;
212 const struct solid *solid;
213 int *facecolours;
214 game_grid *grid;
215 unsigned long *bluemask;
216 int current; /* index of current grid square */
217 int sgkey[2]; /* key-point indices into grid sq */
218 int dgkey[2]; /* key-point indices into grid sq */
219 int spkey[2]; /* key-point indices into polyhedron */
220 int dpkey[2]; /* key-point indices into polyhedron */
221 int previous;
222 float angle;
223 int completed;
224 int movecount;
225};
226
227static game_params *default_params(void)
228{
229 game_params *ret = snew(game_params);
230
231 ret->solid = CUBE;
232 ret->d1 = 4;
233 ret->d2 = 4;
234
235 return ret;
236}
237
238static int game_fetch_preset(int i, char **name, game_params **params)
239{
240 game_params *ret = snew(game_params);
241 char *str;
242
243 switch (i) {
244 case 0:
245 str = "Cube";
246 ret->solid = CUBE;
247 ret->d1 = 4;
248 ret->d2 = 4;
249 break;
250 case 1:
251 str = "Tetrahedron";
252 ret->solid = TETRAHEDRON;
253 ret->d1 = 1;
254 ret->d2 = 2;
255 break;
256 case 2:
257 str = "Octahedron";
258 ret->solid = OCTAHEDRON;
259 ret->d1 = 2;
260 ret->d2 = 2;
261 break;
262 case 3:
263 str = "Icosahedron";
264 ret->solid = ICOSAHEDRON;
265 ret->d1 = 3;
266 ret->d2 = 3;
267 break;
268 default:
269 sfree(ret);
270 return FALSE;
271 }
272
273 *name = dupstr(str);
274 *params = ret;
275 return TRUE;
276}
277
278static void free_params(game_params *params)
279{
280 sfree(params);
281}
282
283static game_params *dup_params(const game_params *params)
284{
285 game_params *ret = snew(game_params);
286 *ret = *params; /* structure copy */
287 return ret;
288}
289
290static void decode_params(game_params *ret, char const *string)
291{
292 switch (*string) {
293 case 't': ret->solid = TETRAHEDRON; string++; break;
294 case 'c': ret->solid = CUBE; string++; break;
295 case 'o': ret->solid = OCTAHEDRON; string++; break;
296 case 'i': ret->solid = ICOSAHEDRON; string++; break;
297 default: break;
298 }
299 ret->d1 = ret->d2 = atoi(string);
300 while (*string && isdigit((unsigned char)*string)) string++;
301 if (*string == 'x') {
302 string++;
303 ret->d2 = atoi(string);
304 }
305}
306
307static char *encode_params(const game_params *params, int full)
308{
309 char data[256];
310
311 assert(params->solid >= 0 && params->solid < 4);
312 sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
313
314 return dupstr(data);
315}
316typedef void (*egc_callback)(void *, struct grid_square *);
317
318static void enum_grid_squares(const game_params *params, egc_callback callback,
319 void *ctx)
320{
321 const struct solid *solid = solids[params->solid];
322
323 if (solid->order == 4) {
324 int x, y;
325
326 for (y = 0; y < params->d2; y++)
327 for (x = 0; x < params->d1; x++) {
328 struct grid_square sq;
329
330 sq.x = (float)x;
331 sq.y = (float)y;
332 sq.points[0] = x - 0.5F;
333 sq.points[1] = y - 0.5F;
334 sq.points[2] = x - 0.5F;
335 sq.points[3] = y + 0.5F;
336 sq.points[4] = x + 0.5F;
337 sq.points[5] = y + 0.5F;
338 sq.points[6] = x + 0.5F;
339 sq.points[7] = y - 0.5F;
340 sq.npoints = 4;
341
342 sq.directions[LEFT] = 0x03; /* 0,1 */
343 sq.directions[RIGHT] = 0x0C; /* 2,3 */
344 sq.directions[UP] = 0x09; /* 0,3 */
345 sq.directions[DOWN] = 0x06; /* 1,2 */
346 sq.directions[UP_LEFT] = 0; /* no diagonals in a square */
347 sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */
348 sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */
349 sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */
350
351 sq.flip = FALSE;
352
353 /*
354 * This is supremely irrelevant, but just to avoid
355 * having any uninitialised structure members...
356 */
357 sq.tetra_class = 0;
358
359 callback(ctx, &sq);
360 }
361 } else {
362 int row, rowlen, other, i, firstix = -1;
363 float theight = (float)(sqrt(3) / 2.0);
364
365 for (row = 0; row < params->d1 + params->d2; row++) {
366 if (row < params->d2) {
367 other = +1;
368 rowlen = row + params->d1;
369 } else {
370 other = -1;
371 rowlen = 2*params->d2 + params->d1 - row;
372 }
373
374 /*
375 * There are `rowlen' down-pointing triangles.
376 */
377 for (i = 0; i < rowlen; i++) {
378 struct grid_square sq;
379 int ix;
380 float x, y;
381
382 ix = (2 * i - (rowlen-1));
383 x = ix * 0.5F;
384 y = theight * row;
385 sq.x = x;
386 sq.y = y + theight / 3;
387 sq.points[0] = x - 0.5F;
388 sq.points[1] = y;
389 sq.points[2] = x;
390 sq.points[3] = y + theight;
391 sq.points[4] = x + 0.5F;
392 sq.points[5] = y;
393 sq.npoints = 3;
394
395 sq.directions[LEFT] = 0x03; /* 0,1 */
396 sq.directions[RIGHT] = 0x06; /* 1,2 */
397 sq.directions[UP] = 0x05; /* 0,2 */
398 sq.directions[DOWN] = 0; /* invalid move */
399
400 /*
401 * Down-pointing triangle: both the up diagonals go
402 * up, and the down ones go left and right.
403 */
404 sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
405 sq.directions[UP];
406 sq.directions[DOWN_LEFT] = sq.directions[LEFT];
407 sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
408
409 sq.flip = TRUE;
410
411 if (firstix < 0)
412 firstix = ix & 3;
413 ix -= firstix;
414 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
415
416 callback(ctx, &sq);
417 }
418
419 /*
420 * There are `rowlen+other' up-pointing triangles.
421 */
422 for (i = 0; i < rowlen+other; i++) {
423 struct grid_square sq;
424 int ix;
425 float x, y;
426
427 ix = (2 * i - (rowlen+other-1));
428 x = ix * 0.5F;
429 y = theight * row;
430 sq.x = x;
431 sq.y = y + 2*theight / 3;
432 sq.points[0] = x + 0.5F;
433 sq.points[1] = y + theight;
434 sq.points[2] = x;
435 sq.points[3] = y;
436 sq.points[4] = x - 0.5F;
437 sq.points[5] = y + theight;
438 sq.npoints = 3;
439
440 sq.directions[LEFT] = 0x06; /* 1,2 */
441 sq.directions[RIGHT] = 0x03; /* 0,1 */
442 sq.directions[DOWN] = 0x05; /* 0,2 */
443 sq.directions[UP] = 0; /* invalid move */
444
445 /*
446 * Up-pointing triangle: both the down diagonals go
447 * down, and the up ones go left and right.
448 */
449 sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
450 sq.directions[DOWN];
451 sq.directions[UP_LEFT] = sq.directions[LEFT];
452 sq.directions[UP_RIGHT] = sq.directions[RIGHT];
453
454 sq.flip = FALSE;
455
456 if (firstix < 0)
457 firstix = (ix - 1) & 3;
458 ix -= firstix;
459 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
460
461 callback(ctx, &sq);
462 }
463 }
464 }
465}
466
467static int grid_area(int d1, int d2, int order)
468{
469 /*
470 * An NxM grid of squares has NM squares in it.
471 *
472 * A grid of triangles with dimensions A and B has a total of
473 * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
474 * a side-A triangle containing A^2 subtriangles, a side-B
475 * triangle containing B^2, and two congruent parallelograms,
476 * each with side lengths A and B, each therefore containing AB
477 * two-triangle rhombuses.)
478 */
479 if (order == 4)
480 return d1 * d2;
481 else
482 return d1*d1 + d2*d2 + 4*d1*d2;
483}
484
485static config_item *game_configure(const game_params *params)
486{
487 config_item *ret = snewn(4, config_item);
488 char buf[80];
489
490 ret[0].name = "Type of solid";
491 ret[0].type = C_CHOICES;
492 ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron";
493 ret[0].ival = params->solid;
494
495 ret[1].name = "Width / top";
496 ret[1].type = C_STRING;
497 sprintf(buf, "%d", params->d1);
498 ret[1].sval = dupstr(buf);
499 ret[1].ival = 0;
500
501 ret[2].name = "Height / bottom";
502 ret[2].type = C_STRING;
503 sprintf(buf, "%d", params->d2);
504 ret[2].sval = dupstr(buf);
505 ret[2].ival = 0;
506
507 ret[3].name = NULL;
508 ret[3].type = C_END;
509 ret[3].sval = NULL;
510 ret[3].ival = 0;
511
512 return ret;
513}
514
515static game_params *custom_params(const config_item *cfg)
516{
517 game_params *ret = snew(game_params);
518
519 ret->solid = cfg[0].ival;
520 ret->d1 = atoi(cfg[1].sval);
521 ret->d2 = atoi(cfg[2].sval);
522
523 return ret;
524}
525
526static void count_grid_square_callback(void *ctx, struct grid_square *sq)
527{
528 int *classes = (int *)ctx;
529 int thisclass;
530
531 if (classes[4] == 4)
532 thisclass = sq->tetra_class;
533 else if (classes[4] == 2)
534 thisclass = sq->flip;
535 else
536 thisclass = 0;
537
538 classes[thisclass]++;
539}
540
541static char *validate_params(const game_params *params, int full)
542{
543 int classes[5];
544 int i;
545
546 if (params->solid < 0 || params->solid >= lenof(solids))
547 return "Unrecognised solid type";
548
549 if (solids[params->solid]->order == 4) {
550 if (params->d1 <= 0 || params->d2 <= 0)
551 return "Both grid dimensions must be greater than zero";
552 } else {
553 if (params->d1 <= 0 && params->d2 <= 0)
554 return "At least one grid dimension must be greater than zero";
555 }
556
557 for (i = 0; i < 4; i++)
558 classes[i] = 0;
559 if (params->solid == TETRAHEDRON)
560 classes[4] = 4;
561 else if (params->solid == OCTAHEDRON)
562 classes[4] = 2;
563 else
564 classes[4] = 1;
565 enum_grid_squares(params, count_grid_square_callback, classes);
566
567 for (i = 0; i < classes[4]; i++)
568 if (classes[i] < solids[params->solid]->nfaces / classes[4])
569 return "Not enough grid space to place all blue faces";
570
571 if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
572 solids[params->solid]->nfaces + 1)
573 return "Not enough space to place the solid on an empty square";
574
575 return NULL;
576}
577
578struct grid_data {
579 int *gridptrs[4];
580 int nsquares[4];
581 int nclasses;
582 int squareindex;
583};
584
585static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
586{
587 struct grid_data *data = (struct grid_data *)ctx;
588 int thisclass;
589
590 if (data->nclasses == 4)
591 thisclass = sq->tetra_class;
592 else if (data->nclasses == 2)
593 thisclass = sq->flip;
594 else
595 thisclass = 0;
596
597 data->gridptrs[thisclass][data->nsquares[thisclass]++] =
598 data->squareindex++;
599}
600
601static char *new_game_desc(const game_params *params, random_state *rs,
602 char **aux, int interactive)
603{
604 struct grid_data data;
605 int i, j, k, m, area, facesperclass;
606 int *flags;
607 char *desc, *p;
608
609 /*
610 * Enumerate the grid squares, dividing them into equivalence
611 * classes as appropriate. (For the tetrahedron, there is one
612 * equivalence class for each face; for the octahedron there
613 * are two classes; for the other two solids there's only one.)
614 */
615
616 area = grid_area(params->d1, params->d2, solids[params->solid]->order);
617 if (params->solid == TETRAHEDRON)
618 data.nclasses = 4;
619 else if (params->solid == OCTAHEDRON)
620 data.nclasses = 2;
621 else
622 data.nclasses = 1;
623 data.gridptrs[0] = snewn(data.nclasses * area, int);
624 for (i = 0; i < data.nclasses; i++) {
625 data.gridptrs[i] = data.gridptrs[0] + i * area;
626 data.nsquares[i] = 0;
627 }
628 data.squareindex = 0;
629 enum_grid_squares(params, classify_grid_square_callback, &data);
630
631 facesperclass = solids[params->solid]->nfaces / data.nclasses;
632
633 for (i = 0; i < data.nclasses; i++)
634 assert(data.nsquares[i] >= facesperclass);
635 assert(data.squareindex == area);
636
637 /*
638 * So now we know how many faces to allocate in each class. Get
639 * on with it.
640 */
641 flags = snewn(area, int);
642 for (i = 0; i < area; i++)
643 flags[i] = FALSE;
644
645 for (i = 0; i < data.nclasses; i++) {
646 for (j = 0; j < facesperclass; j++) {
647 int n = random_upto(rs, data.nsquares[i]);
648
649 assert(!flags[data.gridptrs[i][n]]);
650 flags[data.gridptrs[i][n]] = TRUE;
651
652 /*
653 * Move everything else up the array. I ought to use a
654 * better data structure for this, but for such small
655 * numbers it hardly seems worth the effort.
656 */
657 while (n < data.nsquares[i]-1) {
658 data.gridptrs[i][n] = data.gridptrs[i][n+1];
659 n++;
660 }
661 data.nsquares[i]--;
662 }
663 }
664
665 /*
666 * Now we know precisely which squares are blue. Encode this
667 * information in hex. While we're looping over this, collect
668 * the non-blue squares into a list in the now-unused gridptrs
669 * array.
670 */
671 desc = snewn(area / 4 + 40, char);
672 p = desc;
673 j = 0;
674 k = 8;
675 m = 0;
676 for (i = 0; i < area; i++) {
677 if (flags[i]) {
678 j |= k;
679 } else {
680 data.gridptrs[0][m++] = i;
681 }
682 k >>= 1;
683 if (!k) {
684 *p++ = "0123456789ABCDEF"[j];
685 k = 8;
686 j = 0;
687 }
688 }
689 if (k != 8)
690 *p++ = "0123456789ABCDEF"[j];
691
692 /*
693 * Choose a non-blue square for the polyhedron.
694 */
695 sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
696
697 sfree(data.gridptrs[0]);
698 sfree(flags);
699
700 return desc;
701}
702
703static void add_grid_square_callback(void *ctx, struct grid_square *sq)
704{
705 game_grid *grid = (game_grid *)ctx;
706
707 grid->squares[grid->nsquares++] = *sq; /* structure copy */
708}
709
710static int lowest_face(const struct solid *solid)
711{
712 int i, j, best;
713 float zmin;
714
715 best = 0;
716 zmin = 0.0;
717 for (i = 0; i < solid->nfaces; i++) {
718 float z = 0;
719
720 for (j = 0; j < solid->order; j++) {
721 int f = solid->faces[i*solid->order + j];
722 z += solid->vertices[f*3+2];
723 }
724
725 if (i == 0 || zmin > z) {
726 zmin = z;
727 best = i;
728 }
729 }
730
731 return best;
732}
733
734static int align_poly(const struct solid *solid, struct grid_square *sq,
735 int *pkey)
736{
737 float zmin;
738 int i, j;
739 int flip = (sq->flip ? -1 : +1);
740
741 /*
742 * First, find the lowest z-coordinate present in the solid.
743 */
744 zmin = 0.0;
745 for (i = 0; i < solid->nvertices; i++)
746 if (zmin > solid->vertices[i*3+2])
747 zmin = solid->vertices[i*3+2];
748
749 /*
750 * Now go round the grid square. For each point in the grid
751 * square, we're looking for a point of the polyhedron with the
752 * same x- and y-coordinates (relative to the square's centre),
753 * and z-coordinate equal to zmin (near enough).
754 */
755 for (j = 0; j < sq->npoints; j++) {
756 int matches, index;
757
758 matches = 0;
759 index = -1;
760
761 for (i = 0; i < solid->nvertices; i++) {
762 float dist = 0;
763
764 dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
765 dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
766 dist += SQ(solid->vertices[i*3+2] - zmin);
767
768 if (dist < 0.1) {
769 matches++;
770 index = i;
771 }
772 }
773
774 if (matches != 1 || index < 0)
775 return FALSE;
776 pkey[j] = index;
777 }
778
779 return TRUE;
780}
781
782static void flip_poly(struct solid *solid, int flip)
783{
784 int i;
785
786 if (flip) {
787 for (i = 0; i < solid->nvertices; i++) {
788 solid->vertices[i*3+0] *= -1;
789 solid->vertices[i*3+1] *= -1;
790 }
791 for (i = 0; i < solid->nfaces; i++) {
792 solid->normals[i*3+0] *= -1;
793 solid->normals[i*3+1] *= -1;
794 }
795 }
796}
797
798static struct solid *transform_poly(const struct solid *solid, int flip,
799 int key0, int key1, float angle)
800{
801 struct solid *ret = snew(struct solid);
802 float vx, vy, ax, ay;
803 float vmatrix[9], amatrix[9], vmatrix2[9];
804 int i;
805
806 *ret = *solid; /* structure copy */
807
808 flip_poly(ret, flip);
809
810 /*
811 * Now rotate the polyhedron through the given angle. We must
812 * rotate about the Z-axis to bring the two vertices key0 and
813 * key1 into horizontal alignment, then rotate about the
814 * X-axis, then rotate back again.
815 */
816 vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
817 vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
818 assert(APPROXEQ(vx*vx + vy*vy, 1.0));
819
820 vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0;
821 vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
822 vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1;
823
824 ax = (float)cos(angle);
825 ay = (float)sin(angle);
826
827 amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0;
828 amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay;
829 amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
830
831 memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
832 vmatrix2[1] = vy;
833 vmatrix2[3] = -vy;
834
835 for (i = 0; i < ret->nvertices; i++) {
836 MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
837 MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
838 MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
839 }
840 for (i = 0; i < ret->nfaces; i++) {
841 MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
842 MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
843 MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
844 }
845
846 return ret;
847}
848
849static char *validate_desc(const game_params *params, const char *desc)
850{
851 int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
852 int i, j;
853
854 i = (area + 3) / 4;
855 for (j = 0; j < i; j++) {
856 int c = desc[j];
857 if (c >= '0' && c <= '9') continue;
858 if (c >= 'A' && c <= 'F') continue;
859 if (c >= 'a' && c <= 'f') continue;
860 return "Not enough hex digits at start of string";
861 /* NB if desc[j]=='\0' that will also be caught here, so we're safe */
862 }
863
864 if (desc[i] != ',')
865 return "Expected ',' after hex digits";
866
867 i++;
868 do {
869 if (desc[i] < '0' || desc[i] > '9')
870 return "Expected decimal integer after ','";
871 i++;
872 } while (desc[i]);
873
874 return NULL;
875}
876
877static game_state *new_game(midend *me, const game_params *params,
878 const char *desc)
879{
880 game_grid *grid = snew(game_grid);
881 game_state *state = snew(game_state);
882 int area;
883
884 state->params = *params; /* structure copy */
885 state->solid = solids[params->solid];
886
887 area = grid_area(params->d1, params->d2, state->solid->order);
888 grid->squares = snewn(area, struct grid_square);
889 grid->nsquares = 0;
890 enum_grid_squares(params, add_grid_square_callback, grid);
891 assert(grid->nsquares == area);
892 state->grid = grid;
893 grid->refcount = 1;
894
895 state->facecolours = snewn(state->solid->nfaces, int);
896 memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
897
898 state->bluemask = snewn((state->grid->nsquares + 31) / 32, unsigned long);
899 memset(state->bluemask, 0, (state->grid->nsquares + 31) / 32 *
900 sizeof(unsigned long));
901
902 /*
903 * Set up the blue squares and polyhedron position according to
904 * the game description.
905 */
906 {
907 const char *p = desc;
908 int i, j, v;
909
910 j = 8;
911 v = 0;
912 for (i = 0; i < state->grid->nsquares; i++) {
913 if (j == 8) {
914 v = *p++;
915 if (v >= '0' && v <= '9')
916 v -= '0';
917 else if (v >= 'A' && v <= 'F')
918 v -= 'A' - 10;
919 else if (v >= 'a' && v <= 'f')
920 v -= 'a' - 10;
921 else
922 break;
923 }
924 if (v & j)
925 SET_SQUARE(state, i, TRUE);
926 j >>= 1;
927 if (j == 0)
928 j = 8;
929 }
930
931 if (*p == ',')
932 p++;
933
934 state->current = atoi(p);
935 if (state->current < 0 || state->current >= state->grid->nsquares)
936 state->current = 0; /* got to do _something_ */
937 }
938
939 /*
940 * Align the polyhedron with its grid square and determine
941 * initial key points.
942 */
943 {
944 int pkey[4];
945 int ret;
946
947 ret = align_poly(state->solid, &state->grid->squares[state->current], pkey);
948 assert(ret);
949
950 state->dpkey[0] = state->spkey[0] = pkey[0];
951 state->dpkey[1] = state->spkey[0] = pkey[1];
952 state->dgkey[0] = state->sgkey[0] = 0;
953 state->dgkey[1] = state->sgkey[0] = 1;
954 }
955
956 state->previous = state->current;
957 state->angle = 0.0;
958 state->completed = 0;
959 state->movecount = 0;
960
961 return state;
962}
963
964static game_state *dup_game(const game_state *state)
965{
966 game_state *ret = snew(game_state);
967
968 ret->params = state->params; /* structure copy */
969 ret->solid = state->solid;
970 ret->facecolours = snewn(ret->solid->nfaces, int);
971 memcpy(ret->facecolours, state->facecolours,
972 ret->solid->nfaces * sizeof(int));
973 ret->current = state->current;
974 ret->grid = state->grid;
975 ret->grid->refcount++;
976 ret->bluemask = snewn((ret->grid->nsquares + 31) / 32, unsigned long);
977 memcpy(ret->bluemask, state->bluemask, (ret->grid->nsquares + 31) / 32 *
978 sizeof(unsigned long));
979 ret->dpkey[0] = state->dpkey[0];
980 ret->dpkey[1] = state->dpkey[1];
981 ret->dgkey[0] = state->dgkey[0];
982 ret->dgkey[1] = state->dgkey[1];
983 ret->spkey[0] = state->spkey[0];
984 ret->spkey[1] = state->spkey[1];
985 ret->sgkey[0] = state->sgkey[0];
986 ret->sgkey[1] = state->sgkey[1];
987 ret->previous = state->previous;
988 ret->angle = state->angle;
989 ret->completed = state->completed;
990 ret->movecount = state->movecount;
991
992 return ret;
993}
994
995static void free_game(game_state *state)
996{
997 if (--state->grid->refcount <= 0) {
998 sfree(state->grid->squares);
999 sfree(state->grid);
1000 }
1001 sfree(state->bluemask);
1002 sfree(state->facecolours);
1003 sfree(state);
1004}
1005
1006static char *solve_game(const game_state *state, const game_state *currstate,
1007 const char *aux, char **error)
1008{
1009 return NULL;
1010}
1011
1012static int game_can_format_as_text_now(const game_params *params)
1013{
1014 return TRUE;
1015}
1016
1017static char *game_text_format(const game_state *state)
1018{
1019 return NULL;
1020}
1021
1022static game_ui *new_ui(const game_state *state)
1023{
1024 return NULL;
1025}
1026
1027static void free_ui(game_ui *ui)
1028{
1029}
1030
1031static char *encode_ui(const game_ui *ui)
1032{
1033 return NULL;
1034}
1035
1036static void decode_ui(game_ui *ui, const char *encoding)
1037{
1038}
1039
1040static void game_changed_state(game_ui *ui, const game_state *oldstate,
1041 const game_state *newstate)
1042{
1043}
1044
1045struct game_drawstate {
1046 float gridscale;
1047 int ox, oy; /* pixel position of float origin */
1048};
1049
1050/*
1051 * Code shared between interpret_move() and execute_move().
1052 */
1053static int find_move_dest(const game_state *from, int direction,
1054 int *skey, int *dkey)
1055{
1056 int mask, dest, i, j;
1057 float points[4];
1058
1059 /*
1060 * Find the two points in the current grid square which
1061 * correspond to this move.
1062 */
1063 mask = from->grid->squares[from->current].directions[direction];
1064 if (mask == 0)
1065 return -1;
1066 for (i = j = 0; i < from->grid->squares[from->current].npoints; i++)
1067 if (mask & (1 << i)) {
1068 points[j*2] = from->grid->squares[from->current].points[i*2];
1069 points[j*2+1] = from->grid->squares[from->current].points[i*2+1];
1070 skey[j] = i;
1071 j++;
1072 }
1073 assert(j == 2);
1074
1075 /*
1076 * Now find the other grid square which shares those points.
1077 * This is our move destination.
1078 */
1079 dest = -1;
1080 for (i = 0; i < from->grid->nsquares; i++)
1081 if (i != from->current) {
1082 int match = 0;
1083 float dist;
1084
1085 for (j = 0; j < from->grid->squares[i].npoints; j++) {
1086 dist = (SQ(from->grid->squares[i].points[j*2] - points[0]) +
1087 SQ(from->grid->squares[i].points[j*2+1] - points[1]));
1088 if (dist < 0.1)
1089 dkey[match++] = j;
1090 dist = (SQ(from->grid->squares[i].points[j*2] - points[2]) +
1091 SQ(from->grid->squares[i].points[j*2+1] - points[3]));
1092 if (dist < 0.1)
1093 dkey[match++] = j;
1094 }
1095
1096 if (match == 2) {
1097 dest = i;
1098 break;
1099 }
1100 }
1101
1102 return dest;
1103}
1104
1105static char *interpret_move(const game_state *state, game_ui *ui,
1106 const game_drawstate *ds,
1107 int x, int y, int button)
1108{
1109 int direction, mask, i;
1110 int skey[2], dkey[2];
1111
1112 button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
1113
1114 /*
1115 * Moves can be made with the cursor keys or numeric keypad, or
1116 * alternatively you can left-click and the polyhedron will
1117 * move in the general direction of the mouse pointer.
1118 */
1119 if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
1120 direction = UP;
1121 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
1122 direction = DOWN;
1123 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
1124 direction = LEFT;
1125 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
1126 direction = RIGHT;
1127 else if (button == (MOD_NUM_KEYPAD | '7'))
1128 direction = UP_LEFT;
1129 else if (button == (MOD_NUM_KEYPAD | '1'))
1130 direction = DOWN_LEFT;
1131 else if (button == (MOD_NUM_KEYPAD | '9'))
1132 direction = UP_RIGHT;
1133 else if (button == (MOD_NUM_KEYPAD | '3'))
1134 direction = DOWN_RIGHT;
1135 else if (button == LEFT_BUTTON) {
1136 /*
1137 * Find the bearing of the click point from the current
1138 * square's centre.
1139 */
1140 int cx, cy;
1141 double angle;
1142
1143 cx = (int)(state->grid->squares[state->current].x * GRID_SCALE) + ds->ox;
1144 cy = (int)(state->grid->squares[state->current].y * GRID_SCALE) + ds->oy;
1145
1146 if (x == cx && y == cy)
1147 return NULL; /* clicked in exact centre! */
1148 angle = atan2(y - cy, x - cx);
1149
1150 /*
1151 * There are three possibilities.
1152 *
1153 * - This square is a square, so we choose between UP,
1154 * DOWN, LEFT and RIGHT by dividing the available angle
1155 * at the 45-degree points.
1156 *
1157 * - This square is an up-pointing triangle, so we choose
1158 * between DOWN, LEFT and RIGHT by dividing into
1159 * 120-degree arcs.
1160 *
1161 * - This square is a down-pointing triangle, so we choose
1162 * between UP, LEFT and RIGHT in the inverse manner.
1163 *
1164 * Don't forget that since our y-coordinates increase
1165 * downwards, `angle' is measured _clockwise_ from the
1166 * x-axis, not anticlockwise as most mathematicians would
1167 * instinctively assume.
1168 */
1169 if (state->grid->squares[state->current].npoints == 4) {
1170 /* Square. */
1171 if (fabs(angle) > 3*PI/4)
1172 direction = LEFT;
1173 else if (fabs(angle) < PI/4)
1174 direction = RIGHT;
1175 else if (angle > 0)
1176 direction = DOWN;
1177 else
1178 direction = UP;
1179 } else if (state->grid->squares[state->current].directions[UP] == 0) {
1180 /* Up-pointing triangle. */
1181 if (angle < -PI/2 || angle > 5*PI/6)
1182 direction = LEFT;
1183 else if (angle > PI/6)
1184 direction = DOWN;
1185 else
1186 direction = RIGHT;
1187 } else {
1188 /* Down-pointing triangle. */
1189 assert(state->grid->squares[state->current].directions[DOWN] == 0);
1190 if (angle > PI/2 || angle < -5*PI/6)
1191 direction = LEFT;
1192 else if (angle < -PI/6)
1193 direction = UP;
1194 else
1195 direction = RIGHT;
1196 }
1197 } else
1198 return NULL;
1199
1200 mask = state->grid->squares[state->current].directions[direction];
1201 if (mask == 0)
1202 return NULL;
1203
1204 /*
1205 * Translate diagonal directions into orthogonal ones.
1206 */
1207 if (direction > DOWN) {
1208 for (i = LEFT; i <= DOWN; i++)
1209 if (state->grid->squares[state->current].directions[i] == mask) {
1210 direction = i;
1211 break;
1212 }
1213 assert(direction <= DOWN);
1214 }
1215
1216 if (find_move_dest(state, direction, skey, dkey) < 0)
1217 return NULL;
1218
1219 if (direction == LEFT) return dupstr("L");
1220 if (direction == RIGHT) return dupstr("R");
1221 if (direction == UP) return dupstr("U");
1222 if (direction == DOWN) return dupstr("D");
1223
1224 return NULL; /* should never happen */
1225}
1226
1227static game_state *execute_move(const game_state *from, const char *move)
1228{
1229 game_state *ret;
1230 float angle;
1231 struct solid *poly;
1232 int pkey[2];
1233 int skey[2], dkey[2];
1234 int i, j, dest;
1235 int direction;
1236
1237 switch (*move) {
1238 case 'L': direction = LEFT; break;
1239 case 'R': direction = RIGHT; break;
1240 case 'U': direction = UP; break;
1241 case 'D': direction = DOWN; break;
1242 default: return NULL;
1243 }
1244
1245 dest = find_move_dest(from, direction, skey, dkey);
1246 if (dest < 0)
1247 return NULL;
1248
1249 ret = dup_game(from);
1250 ret->current = dest;
1251
1252 /*
1253 * So we know what grid square we're aiming for, and we also
1254 * know the two key points (as indices in both the source and
1255 * destination grid squares) which are invariant between source
1256 * and destination.
1257 *
1258 * Next we must roll the polyhedron on to that square. So we
1259 * find the indices of the key points within the polyhedron's
1260 * vertex array, then use those in a call to transform_poly,
1261 * and align the result on the new grid square.
1262 */
1263 {
1264 int all_pkey[4];
1265 align_poly(from->solid, &from->grid->squares[from->current], all_pkey);
1266 pkey[0] = all_pkey[skey[0]];
1267 pkey[1] = all_pkey[skey[1]];
1268 /*
1269 * Now pkey[0] corresponds to skey[0] and dkey[0], and
1270 * likewise [1].
1271 */
1272 }
1273
1274 /*
1275 * Now find the angle through which to rotate the polyhedron.
1276 * Do this by finding the two faces that share the two vertices
1277 * we've found, and taking the dot product of their normals.
1278 */
1279 {
1280 int f[2], nf = 0;
1281 float dp;
1282
1283 for (i = 0; i < from->solid->nfaces; i++) {
1284 int match = 0;
1285 for (j = 0; j < from->solid->order; j++)
1286 if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
1287 from->solid->faces[i*from->solid->order + j] == pkey[1])
1288 match++;
1289 if (match == 2) {
1290 assert(nf < 2);
1291 f[nf++] = i;
1292 }
1293 }
1294
1295 assert(nf == 2);
1296
1297 dp = 0;
1298 for (i = 0; i < 3; i++)
1299 dp += (from->solid->normals[f[0]*3+i] *
1300 from->solid->normals[f[1]*3+i]);
1301 angle = (float)acos(dp);
1302 }
1303
1304 /*
1305 * Now transform the polyhedron. We aren't entirely sure
1306 * whether we need to rotate through angle or -angle, and the
1307 * simplest way round this is to try both and see which one
1308 * aligns successfully!
1309 *
1310 * Unfortunately, _both_ will align successfully if this is a
1311 * cube, which won't tell us anything much. So for that
1312 * particular case, I resort to gross hackery: I simply negate
1313 * the angle before trying the alignment, depending on the
1314 * direction. Which directions work which way is determined by
1315 * pure trial and error. I said it was gross :-/
1316 */
1317 {
1318 int all_pkey[4];
1319 int success;
1320
1321 if (from->solid->order == 4 && direction == UP)
1322 angle = -angle; /* HACK */
1323
1324 poly = transform_poly(from->solid,
1325 from->grid->squares[from->current].flip,
1326 pkey[0], pkey[1], angle);
1327 flip_poly(poly, from->grid->squares[ret->current].flip);
1328 success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
1329
1330 if (!success) {
1331 sfree(poly);
1332 angle = -angle;
1333 poly = transform_poly(from->solid,
1334 from->grid->squares[from->current].flip,
1335 pkey[0], pkey[1], angle);
1336 flip_poly(poly, from->grid->squares[ret->current].flip);
1337 success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
1338 }
1339
1340 assert(success);
1341 }
1342
1343 /*
1344 * Now we have our rotated polyhedron, which we expect to be
1345 * exactly congruent to the one we started with - but with the
1346 * faces permuted. So we map that congruence and thereby figure
1347 * out how to permute the faces as a result of the polyhedron
1348 * having rolled.
1349 */
1350 {
1351 int *newcolours = snewn(from->solid->nfaces, int);
1352
1353 for (i = 0; i < from->solid->nfaces; i++)
1354 newcolours[i] = -1;
1355
1356 for (i = 0; i < from->solid->nfaces; i++) {
1357 int nmatch = 0;
1358
1359 /*
1360 * Now go through the transformed polyhedron's faces
1361 * and figure out which one's normal is approximately
1362 * equal to this one.
1363 */
1364 for (j = 0; j < poly->nfaces; j++) {
1365 float dist;
1366 int k;
1367
1368 dist = 0;
1369
1370 for (k = 0; k < 3; k++)
1371 dist += SQ(poly->normals[j*3+k] -
1372 from->solid->normals[i*3+k]);
1373
1374 if (APPROXEQ(dist, 0)) {
1375 nmatch++;
1376 newcolours[i] = ret->facecolours[j];
1377 }
1378 }
1379
1380 assert(nmatch == 1);
1381 }
1382
1383 for (i = 0; i < from->solid->nfaces; i++)
1384 assert(newcolours[i] != -1);
1385
1386 sfree(ret->facecolours);
1387 ret->facecolours = newcolours;
1388 }
1389
1390 ret->movecount++;
1391
1392 /*
1393 * And finally, swap the colour between the bottom face of the
1394 * polyhedron and the face we've just landed on.
1395 *
1396 * We don't do this if the game is already complete, since we
1397 * allow the user to roll the fully blue polyhedron around the
1398 * grid as a feeble reward.
1399 */
1400 if (!ret->completed) {
1401 i = lowest_face(from->solid);
1402 j = ret->facecolours[i];
1403 ret->facecolours[i] = GET_SQUARE(ret, ret->current);
1404 SET_SQUARE(ret, ret->current, j);
1405
1406 /*
1407 * Detect game completion.
1408 */
1409 j = 0;
1410 for (i = 0; i < ret->solid->nfaces; i++)
1411 if (ret->facecolours[i])
1412 j++;
1413 if (j == ret->solid->nfaces)
1414 ret->completed = ret->movecount;
1415 }
1416
1417 sfree(poly);
1418
1419 /*
1420 * Align the normal polyhedron with its grid square, to get key
1421 * points for non-animated display.
1422 */
1423 {
1424 int pkey[4];
1425 int success;
1426
1427 success = align_poly(ret->solid, &ret->grid->squares[ret->current], pkey);
1428 assert(success);
1429
1430 ret->dpkey[0] = pkey[0];
1431 ret->dpkey[1] = pkey[1];
1432 ret->dgkey[0] = 0;
1433 ret->dgkey[1] = 1;
1434 }
1435
1436
1437 ret->spkey[0] = pkey[0];
1438 ret->spkey[1] = pkey[1];
1439 ret->sgkey[0] = skey[0];
1440 ret->sgkey[1] = skey[1];
1441 ret->previous = from->current;
1442 ret->angle = angle;
1443
1444 return ret;
1445}
1446
1447/* ----------------------------------------------------------------------
1448 * Drawing routines.
1449 */
1450
1451struct bbox {
1452 float l, r, u, d;
1453};
1454
1455static void find_bbox_callback(void *ctx, struct grid_square *sq)
1456{
1457 struct bbox *bb = (struct bbox *)ctx;
1458 int i;
1459
1460 for (i = 0; i < sq->npoints; i++) {
1461 if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
1462 if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
1463 if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
1464 if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
1465 }
1466}
1467
1468static struct bbox find_bbox(const game_params *params)
1469{
1470 struct bbox bb;
1471
1472 /*
1473 * These should be hugely more than the real bounding box will
1474 * be.
1475 */
1476 bb.l = 2.0F * (params->d1 + params->d2);
1477 bb.r = -2.0F * (params->d1 + params->d2);
1478 bb.u = 2.0F * (params->d1 + params->d2);
1479 bb.d = -2.0F * (params->d1 + params->d2);
1480 enum_grid_squares(params, find_bbox_callback, &bb);
1481
1482 return bb;
1483}
1484
1485#define XSIZE(gs, bb, solid) \
1486 ((int)(((bb).r - (bb).l + 2*(solid)->border) * gs))
1487#define YSIZE(gs, bb, solid) \
1488 ((int)(((bb).d - (bb).u + 2*(solid)->border) * gs))
1489
1490static void game_compute_size(const game_params *params, int tilesize,
1491 int *x, int *y)
1492{
1493 struct bbox bb = find_bbox(params);
1494
1495 *x = XSIZE(tilesize, bb, solids[params->solid]);
1496 *y = YSIZE(tilesize, bb, solids[params->solid]);
1497}
1498
1499static void game_set_size(drawing *dr, game_drawstate *ds,
1500 const game_params *params, int tilesize)
1501{
1502 struct bbox bb = find_bbox(params);
1503
1504 ds->gridscale = (float)tilesize;
1505 ds->ox = (int)(-(bb.l - solids[params->solid]->border) * ds->gridscale);
1506 ds->oy = (int)(-(bb.u - solids[params->solid]->border) * ds->gridscale);
1507}
1508
1509static float *game_colours(frontend *fe, int *ncolours)
1510{
1511 float *ret = snewn(3 * NCOLOURS, float);
1512
1513 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1514
1515 ret[COL_BORDER * 3 + 0] = 0.0;
1516 ret[COL_BORDER * 3 + 1] = 0.0;
1517 ret[COL_BORDER * 3 + 2] = 0.0;
1518
1519 ret[COL_BLUE * 3 + 0] = 0.0;
1520 ret[COL_BLUE * 3 + 1] = 0.0;
1521 ret[COL_BLUE * 3 + 2] = 1.0;
1522
1523 *ncolours = NCOLOURS;
1524 return ret;
1525}
1526
1527static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
1528{
1529 struct game_drawstate *ds = snew(struct game_drawstate);
1530
1531 ds->ox = ds->oy = 0;
1532 ds->gridscale = 0.0F; /* not decided yet */
1533
1534 return ds;
1535}
1536
1537static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1538{
1539 sfree(ds);
1540}
1541
1542static void game_redraw(drawing *dr, game_drawstate *ds,
1543 const game_state *oldstate, const game_state *state,
1544 int dir, const game_ui *ui,
1545 float animtime, float flashtime)
1546{
1547 int i, j;
1548 struct bbox bb = find_bbox(&state->params);
1549 struct solid *poly;
1550 const int *pkey, *gkey;
1551 float t[3];
1552 float angle;
1553 int square;
1554
1555 draw_rect(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
1556 YSIZE(GRID_SCALE, bb, state->solid), COL_BACKGROUND);
1557
1558 if (dir < 0) {
1559 const game_state *t;
1560
1561 /*
1562 * This is an Undo. So reverse the order of the states, and
1563 * run the roll timer backwards.
1564 */
1565 assert(oldstate);
1566
1567 t = oldstate;
1568 oldstate = state;
1569 state = t;
1570
1571 animtime = ROLLTIME - animtime;
1572 }
1573
1574 if (!oldstate) {
1575 oldstate = state;
1576 angle = 0.0;
1577 square = state->current;
1578 pkey = state->dpkey;
1579 gkey = state->dgkey;
1580 } else {
1581 angle = state->angle * animtime / ROLLTIME;
1582 square = state->previous;
1583 pkey = state->spkey;
1584 gkey = state->sgkey;
1585 }
1586 state = oldstate;
1587
1588 for (i = 0; i < state->grid->nsquares; i++) {
1589 int coords[8];
1590
1591 for (j = 0; j < state->grid->squares[i].npoints; j++) {
1592 coords[2*j] = ((int)(state->grid->squares[i].points[2*j] * GRID_SCALE)
1593 + ds->ox);
1594 coords[2*j+1] = ((int)(state->grid->squares[i].points[2*j+1]*GRID_SCALE)
1595 + ds->oy);
1596 }
1597
1598 draw_polygon(dr, coords, state->grid->squares[i].npoints,
1599 GET_SQUARE(state, i) ? COL_BLUE : COL_BACKGROUND,
1600 COL_BORDER);
1601 }
1602
1603 /*
1604 * Now compute and draw the polyhedron.
1605 */
1606 poly = transform_poly(state->solid, state->grid->squares[square].flip,
1607 pkey[0], pkey[1], angle);
1608
1609 /*
1610 * Compute the translation required to align the two key points
1611 * on the polyhedron with the same key points on the current
1612 * face.
1613 */
1614 for (i = 0; i < 3; i++) {
1615 float tc = 0.0;
1616
1617 for (j = 0; j < 2; j++) {
1618 float grid_coord;
1619
1620 if (i < 2) {
1621 grid_coord =
1622 state->grid->squares[square].points[gkey[j]*2+i];
1623 } else {
1624 grid_coord = 0.0;
1625 }
1626
1627 tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
1628 }
1629
1630 t[i] = tc / 2;
1631 }
1632 for (i = 0; i < poly->nvertices; i++)
1633 for (j = 0; j < 3; j++)
1634 poly->vertices[i*3+j] += t[j];
1635
1636 /*
1637 * Now actually draw each face.
1638 */
1639 for (i = 0; i < poly->nfaces; i++) {
1640 float points[8];
1641 int coords[8];
1642
1643 for (j = 0; j < poly->order; j++) {
1644 int f = poly->faces[i*poly->order + j];
1645 points[j*2] = (poly->vertices[f*3+0] -
1646 poly->vertices[f*3+2] * poly->shear);
1647 points[j*2+1] = (poly->vertices[f*3+1] -
1648 poly->vertices[f*3+2] * poly->shear);
1649 }
1650
1651 for (j = 0; j < poly->order; j++) {
1652 coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
1653 coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
1654 }
1655
1656 /*
1657 * Find out whether these points are in a clockwise or
1658 * anticlockwise arrangement. If the latter, discard the
1659 * face because it's facing away from the viewer.
1660 *
1661 * This would involve fiddly winding-number stuff for a
1662 * general polygon, but for the simple parallelograms we'll
1663 * be seeing here, all we have to do is check whether the
1664 * corners turn right or left. So we'll take the vector
1665 * from point 0 to point 1, turn it right 90 degrees,
1666 * and check the sign of the dot product with that and the
1667 * next vector (point 1 to point 2).
1668 */
1669 {
1670 float v1x = points[2]-points[0];
1671 float v1y = points[3]-points[1];
1672 float v2x = points[4]-points[2];
1673 float v2y = points[5]-points[3];
1674 float dp = v1x * v2y - v1y * v2x;
1675
1676 if (dp <= 0)
1677 continue;
1678 }
1679
1680 draw_polygon(dr, coords, poly->order,
1681 state->facecolours[i] ? COL_BLUE : COL_BACKGROUND,
1682 COL_BORDER);
1683 }
1684 sfree(poly);
1685
1686 draw_update(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
1687 YSIZE(GRID_SCALE, bb, state->solid));
1688
1689 /*
1690 * Update the status bar.
1691 */
1692 {
1693 char statusbuf[256];
1694
1695 sprintf(statusbuf, "%sMoves: %d",
1696 (state->completed ? "COMPLETED! " : ""),
1697 (state->completed ? state->completed : state->movecount));
1698
1699 status_bar(dr, statusbuf);
1700 }
1701}
1702
1703static float game_anim_length(const game_state *oldstate,
1704 const game_state *newstate, int dir, game_ui *ui)
1705{
1706 return ROLLTIME;
1707}
1708
1709static float game_flash_length(const game_state *oldstate,
1710 const game_state *newstate, int dir, game_ui *ui)
1711{
1712 return 0.0F;
1713}
1714
1715static int game_status(const game_state *state)
1716{
1717 return state->completed ? +1 : 0;
1718}
1719
1720static int game_timing_state(const game_state *state, game_ui *ui)
1721{
1722 return TRUE;
1723}
1724
1725static void game_print_size(const game_params *params, float *x, float *y)
1726{
1727}
1728
1729static void game_print(drawing *dr, const game_state *state, int tilesize)
1730{
1731}
1732
1733#ifdef COMBINED
1734#define thegame cube
1735#endif
1736
1737const struct game thegame = {
1738 "Cube", "games.cube", "cube",
1739 default_params,
1740 game_fetch_preset, NULL,
1741 decode_params,
1742 encode_params,
1743 free_params,
1744 dup_params,
1745 TRUE, game_configure, custom_params,
1746 validate_params,
1747 new_game_desc,
1748 validate_desc,
1749 new_game,
1750 dup_game,
1751 free_game,
1752 FALSE, solve_game,
1753 FALSE, game_can_format_as_text_now, game_text_format,
1754 new_ui,
1755 free_ui,
1756 encode_ui,
1757 decode_ui,
1758 game_changed_state,
1759 interpret_move,
1760 execute_move,
1761 PREFERRED_GRID_SCALE, game_compute_size, game_set_size,
1762 game_colours,
1763 game_new_drawstate,
1764 game_free_drawstate,
1765 game_redraw,
1766 game_anim_length,
1767 game_flash_length,
1768 game_status,
1769 FALSE, FALSE, game_print_size, game_print,
1770 TRUE, /* wants_statusbar */
1771 FALSE, game_timing_state,
1772 0, /* flags */
1773};